----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN | | VERSION 1 BY S. GREEN (NOV 1973); THIS IS VERSION 14 (AUG 94) | | | | RUN ON 31 Aug 1994 AT 11:42:39 | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- PUBLICATIONS RESULTING FROM THE USE OF THIS PROGRAM SHOULD REFER TO J. M. HUTSON AND S. GREEN, MOLSCAT COMPUTER CODE, VERSION 14 (AUG 94) DISTRIBUTED BY COLLABORATIVE COMPUTATIONAL PROJECT NO. 6 OF THE SCIENCE AND ENGINEERING RESEARCH COUNCIL (UK) /INPUT/ DATA ARE -- RUN LABEL = TEST ITYPE=26, H2O-HE / MODEL POTL (1 OF 5) SCRATCH CORE STORAGE ALLOCATION IS 1000000(8-BYTE) WORDS ( 7812.50 KBYTES) 2 INTEGER(S) CAN BE STORED IN EACH WORD. INTEGRATOR REQUESTED BY INPUT VALUE INTFLG = 6 COUPLED EQUATIONS SOLVED BY DIABATIC MODIFIED LOG DERIVATIVE METHOD OF MANOLOPOULOS INTEGRATION PARAMETERS ARE RMIN = .50 STEPS = 6.0 RMAX = 5.00 IRXSET = 1 OPTION. RMAX ADJUSTED AUTOMATICALLY FOR EACH NEW JTOT,MVAL IRMSET = 8 OPTION. RMIN CHOSEN AUTOMATICALLY FOR EACH NEW JTOT ENERGY-INDEPENDENT MATRICES WILL BE SAVED TEMPORARILY ON UNIT 1 REDUCED MASS FOR COLLISION = 3.270000000 A.M.U. CONTROL DATA FOR TOTAL ANGULAR MOMENTUM IS JTOT FROM 10 TO 10 IN STEPS OF 1 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. CONTROL DATA FOR TOTAL ENERGIES. CALCULATIONS WILL BE PERFORMED FOR 1 VALUES ENERGY NO. 1 = 300.000000000 (1/CM) = .037195273076 E.V. THESE ENERGY VALUES WILL BE USED AS RELATIVE (CENTER OF MASS) VALUES AND LIST MAY BE MODIFIED ACCORDINGLY. PRINT LEVEL (PRNTLV) = 1 OTHER PRINT CONTROLS ISIGPR = 1 ITHROW = 0 ======================================================================================================================== /BASIS/ DATA ARE -- 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. COUPLED STATES APPROXIMATION OF MCGUIRE AND KOURI (C.F. J. CHEM. PHYS. 60, 2488 (1974)) WILL BE USED. ITYPE = 26 L(I) = JTOT + ( 0) * J(I) COLLISION TYPE IS ASYMMETRIC TOP - ATOM ILLEGAL UNIT = 0 SPECIFIED FOR IASYMU, DEFAULTED TO 5 ASYMMETRIC TOP BASIS WILL BE INPUT FROM UNIT IASYMU = 5 5 INPUT LEVELS SPECIFIED BY NLEVEL. 0 INPUT LEVEL 1 J, TAU = 0 1 ENERGY = .00000 = .00000 (1/CM) INPUT COEFFICIENTS ARE 1.000000( 0) 0 INPUT LEVEL 2 J, TAU = 1 2 ENERGY = 37.16377 = 37.16377 (1/CM) INPUT COEFFICIENTS ARE .000000( -1) 1.000000( 0) .000000( 1) 0 INPUT LEVEL 3 J, TAU = 2 1 ENERGY = 70.13107 = 70.13107 (1/CM) INPUT COEFFICIENTS ARE -.557980( -2) .000000( -1) .614260( 0) .000000( 1) -.557980( 2) 0 INPUT LEVEL 4 J, TAU = 2 3 ENERGY = 95.19337 = 95.19337 (1/CM) INPUT COEFFICIENTS ARE -.707107( -2) .000000( -1) .000000( 0) .000000( 1) .707107( 2) 0 INPUT LEVEL 5 J, TAU = 2 5 ENERGY = 136.55365 = 136.55365 (1/CM) INPUT COEFFICIENTS ARE -.434348( -2) .000000( -1) -.789103( 0) .000000( 1) -.434348( 2) 0 CHECK6. INPUT FUNCTIONS WILL BE CHECKED FOR ORTHOGONALITY. *** NOTE. IN CS CALCULATION MINUS/PLUS M-VALUE ASSUMED TO BE IDENTICAL. LEVEL ENERGY(1/CM) J TAU PRTY SIG INDX 1 .0000000 0 1 0 30 1 1 2 37.1637700 1 2 0 31 3 2 3 70.1310700 2 1 0 34 5 3 4 95.1933700 2 3 1 39 5 4 5 136.5536500 2 5 0 44 5 5 ======================================================================================================================== STANDARD MOLSCAT POTENL ROUTINE (AUG 94) CALLED FOR POTENTIAL. /POTL/ DATA ARE -- ANGULAR DEPENDENCE OF POTENTIAL EXPANDED IN TERMS OF NORMALISED SPHERICAL HARMONICS: (Y(LAM,MU) + (-)**MU Y(LAM,-MU)) / (1+DELTA(MU,0)) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 1 WHICH HAS LAMBDA = 0 ABS(MU)= 0 .16275480D+06 * EXP( -12.0000 * R ) -.20000000D+01 * R ** -6 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 2 WHICH HAS LAMBDA = 1 ABS(MU)= 0 -.29296000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 3 WHICH HAS LAMBDA = 2 ABS(MU)= 0 .13670000D+04 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 4 WHICH HAS LAMBDA = 2 ABS(MU)= 2 .26041000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 5 WHICH HAS LAMBDA = 3 ABS(MU)= 0 .19531000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 6 WHICH HAS LAMBDA = 3 ABS(MU)= 2 -.26041000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 7 WHICH HAS LAMBDA = 4 ABS(MU)= 0 -.97560000D+04 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 8 WHICH HAS LAMBDA = 4 ABS(MU)= 2 .81380000D+04 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 9 WHICH HAS LAMBDA = 4 ABS(MU)= 4 .65100000D+04 * EXP( -12.0000 * R ) NUMBER OF UNIQUE POWERS = 1 POWER 1 = -6 POTENL PROCESSING FINISHED. ENERGY IN UNITS OF EPSILON = 130.00000 CM-1 R IN UNITS OF RM = 2.90000 ANGSTROMS MXLAM = 9 NPOTL = 9 ======================================================================================================================== REVIEW OF REQUESTED PRESSURE BROADENING CALCULATION. ****** THIS IS OFF-DIAGONAL VERSION (DEC 88) ****** PRESSURE-BROADENING LINE-SHAPE CALCULATION REQUESTED FOR 1 LINES. LINE LEV(A) LEV(B) LEV(A1) LEV(B1) 1 1 2 1 2 LEVELS 1 (JA = 0 ), 2 (JB = 1 ) **TO** LEVELS 1 (JA1 = 0 ), 2 (JB1 = 1 ) WILL BE PROCESSED FOR DIPOLE RADIATION. AT RELATIVE K.E. = 300.000000000 (1/CM) WITH 1-TH AND 2-TH ENERGY VALUES RESPECTIVELY. MODIFIED ENERGY LIST NOW CONTAINS 2 VALUES, ENERGY( 1) = 337.163770000 ENERGY( 2) = 300.000000000 LINE-SHAPE TABLES HAVE BEEN MODIFIED ACCORDINGLY. *** *** IN-CORE DA SIMULATION ROUTINE HAS CONTROL. *** *** DA FILE WILL NOT BE USED. *** *** NUMBER OF SIMULATED RECORDS = 20000 ======================================================================================================================== 0 STATE-TO-STATE INTEGRAL CROSS-SECTIONS WILL BE COMPUTED BUT NOT STORED ON DISK ======================================================================================================================== INITIALIZATION DONE. TIME WAS .03 CPU SECS. 158 WORDS OF STORAGE USED. 1=================================== TEST ITYPE=26, H2O-HE / MODEL POTL (1 OF 5) ==================================== ANGULAR MOMENTUM JTOT = 10 **************************** JTOT= 10. 1 E( 1)= 337.164, MAX D/O-D= 1.4D+00 2.1D-01 TIME= JTOT= 10. 1 E( 2)= 300.000, MAX D/O-D= 1.3D+00 2.4D-01 TIME= JTOT= 10. 2 E( 1)= 337.164, MAX D/O-D= 2.2D+00 3.5D-01 TIME= JTOT= 10. 2 E( 2)= 300.000, MAX D/O-D= 1.1D+00 4.1D-01 TIME= JTOT= 10. 3 E( 1)= 337.164, MAX D/O-D= 1.5D+00 3.4D-01 TIME= JTOT= 10. 3 E( 2)= 300.000, MAX D/O-D= 2.0D+00 3.8D-01 TIME= ACCUMULATED PRESSURE-BROADENING CROSS SECTIONS (IN ANG**2) LINE LEV(A) LEV(B) LEV(A1) LEV(B1) TYPE EREL(1/CM) RE(S) IM(S) 1 1 2 1 2 DIPOLE 300.000000000 .695622D+00 -.420542D-01 1 TEST ITYPE=26, H2O-HE / MODEL POTL (1 OF 5) ENERGY JTOTL JSTEP JTOTU F I SIG(F,I) 337.163770 10 1 10 1 1 1.411989D+00 337.163770 10 1 10 2 1 1.890707D-01 337.163770 10 1 10 3 1 2.132027D-01 337.163770 10 1 10 5 1 1.844333D-01 337.163770 10 1 10 1 2 7.083088D-02 337.163770 10 1 10 2 2 2.831648D-01 337.163770 10 1 10 3 2 2.184975D-01 337.163770 10 1 10 4 2 1.778209D-01 337.163770 10 1 10 5 2 2.012738D-01 337.163770 10 1 10 1 3 5.383928D-02 337.163770 10 1 10 2 3 1.472836D-01 337.163770 10 1 10 3 3 8.884943D-01 337.163770 10 1 10 4 3 3.863625D-01 337.163770 10 1 10 5 3 1.148622D-01 337.163770 10 1 10 2 4 1.322796D-01 337.163770 10 1 10 3 4 4.263803D-01 337.163770 10 1 10 4 4 1.953220D+00 337.163770 10 1 10 5 4 3.593232D-01 337.163770 10 1 10 1 5 6.199510D-02 337.163770 10 1 10 2 5 1.805955D-01 337.163770 10 1 10 3 5 1.528934D-01 337.163770 10 1 10 4 5 4.334057D-01 337.163770 10 1 10 5 5 4.427193D+00 300.000000 10 1 10 1 1 1.616448D-01 300.000000 10 1 10 2 1 2.198449D-01 300.000000 10 1 10 3 1 2.439490D-01 300.000000 10 1 10 5 1 1.962735D-01 300.000000 10 1 10 1 2 8.364330D-02 300.000000 10 1 10 2 2 1.309240D+00 300.000000 10 1 10 3 2 2.357915D-01 300.000000 10 1 10 4 2 2.192656D-01 300.000000 10 1 10 5 2 2.135919D-01 300.000000 10 1 10 1 3 6.367516D-02 300.000000 10 1 10 2 3 1.617649D-01 300.000000 10 1 10 3 3 3.134719D+00 300.000000 10 1 10 4 3 4.468870D-01 300.000000 10 1 10 5 3 1.104882D-01 300.000000 10 1 10 2 4 1.688352D-01 300.000000 10 1 10 3 4 5.015728D-01 300.000000 10 1 10 4 4 3.854695D+00 300.000000 10 1 10 5 4 3.805562D-01 300.000000 10 1 10 1 5 7.205060D-02 300.000000 10 1 10 2 5 2.060849D-01 300.000000 10 1 10 3 5 1.553892D-01 300.000000 10 1 10 4 5 4.768563D-01 300.000000 10 1 10 5 5 2.433213D+00 1=================================== TEST ITYPE=26, H2O-HE / MODEL POTL (1 OF 5) ==================================== ACCUMULATED PRESSURE-BROADENING CROSS SECTIONS (IN ANG**2) LINE LEV(A) LEV(B) LEV(A1) LEV(B1) TYPE EREL(1/CM) RE(S) IM(S) 1 1 2 1 2 DIPOLE 300.000000000 .695622D+00 -.420542D-01 *** IN-CORE DA SIMULATOR USED 6 OF THE 20000 ALLOCATED RECORDS ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN, VERSION 14 (AUG 94) | | | | THIS RUN USED .35 CPU SECS AND 683 OF THE ALLOCATED 1000000 WORDS OF STORAGE | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN | | VERSION 1 BY S. GREEN (NOV 1973); THIS IS VERSION 14 (AUG 94) | | | | RUN ON 31 Aug 1994 AT 11:42:40 | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- PUBLICATIONS RESULTING FROM THE USE OF THIS PROGRAM SHOULD REFER TO J. M. HUTSON AND S. GREEN, MOLSCAT COMPUTER CODE, VERSION 14 (AUG 94) DISTRIBUTED BY COLLABORATIVE COMPUTATIONAL PROJECT NO. 6 OF THE SCIENCE AND ENGINEERING RESEARCH COUNCIL (UK) /INPUT/ DATA ARE -- RUN LABEL = TEST ITYPE=26, H2O-HE / POTL PROJECTED VIA VRTP (2 OF 5) SCRATCH CORE STORAGE ALLOCATION IS 1000000(8-BYTE) WORDS ( 7812.50 KBYTES) 2 INTEGER(S) CAN BE STORED IN EACH WORD. INTEGRATOR REQUESTED BY INPUT VALUE INTFLG = 6 COUPLED EQUATIONS SOLVED BY DIABATIC MODIFIED LOG DERIVATIVE METHOD OF MANOLOPOULOS INTEGRATION PARAMETERS ARE RMIN = .50 STEPS = 6.0 RMAX = 5.00 IRXSET = 1 OPTION. RMAX ADJUSTED AUTOMATICALLY FOR EACH NEW JTOT,MVAL IRMSET = 8 OPTION. RMIN CHOSEN AUTOMATICALLY FOR EACH NEW JTOT ENERGY-INDEPENDENT MATRICES WILL BE SAVED TEMPORARILY ON UNIT 1 REDUCED MASS FOR COLLISION = 3.270000000 A.M.U. CONTROL DATA FOR TOTAL ANGULAR MOMENTUM IS JTOT FROM 10 TO 10 IN STEPS OF 1 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. CONTROL DATA FOR TOTAL ENERGIES. CALCULATIONS WILL BE PERFORMED FOR 1 VALUES ENERGY NO. 1 = 300.000000000 (1/CM) = .037195273076 E.V. THESE ENERGY VALUES WILL BE USED AS RELATIVE (CENTER OF MASS) VALUES AND LIST MAY BE MODIFIED ACCORDINGLY. PRINT LEVEL (PRNTLV) = 1 OTHER PRINT CONTROLS ISIGPR = 1 ITHROW = 0 ======================================================================================================================== /BASIS/ DATA ARE -- 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. COUPLED STATES APPROXIMATION OF MCGUIRE AND KOURI (C.F. J. CHEM. PHYS. 60, 2488 (1974)) WILL BE USED. ITYPE = 26 L(I) = JTOT + ( 0) * J(I) COLLISION TYPE IS ASYMMETRIC TOP - ATOM ILLEGAL UNIT = 0 SPECIFIED FOR IASYMU, DEFAULTED TO 5 ASYMMETRIC TOP BASIS WILL BE INPUT FROM UNIT IASYMU = 5 5 INPUT LEVELS SPECIFIED BY NLEVEL. 0 INPUT LEVEL 1 J, TAU = 0 1 ENERGY = .00000 = .00000 (1/CM) INPUT COEFFICIENTS ARE 1.000000( 0) 0 INPUT LEVEL 2 J, TAU = 1 2 ENERGY = 37.16377 = 37.16377 (1/CM) INPUT COEFFICIENTS ARE .000000( -1) 1.000000( 0) .000000( 1) 0 INPUT LEVEL 3 J, TAU = 2 1 ENERGY = 70.13107 = 70.13107 (1/CM) INPUT COEFFICIENTS ARE -.557980( -2) .000000( -1) .614260( 0) .000000( 1) -.557980( 2) 0 INPUT LEVEL 4 J, TAU = 2 3 ENERGY = 95.19337 = 95.19337 (1/CM) INPUT COEFFICIENTS ARE -.707107( -2) .000000( -1) .000000( 0) .000000( 1) .707107( 2) 0 INPUT LEVEL 5 J, TAU = 2 5 ENERGY = 136.55365 = 136.55365 (1/CM) INPUT COEFFICIENTS ARE -.434348( -2) .000000( -1) -.789103( 0) .000000( 1) -.434348( 2) 0 CHECK6. INPUT FUNCTIONS WILL BE CHECKED FOR ORTHOGONALITY. *** NOTE. IN CS CALCULATION MINUS/PLUS M-VALUE ASSUMED TO BE IDENTICAL. LEVEL ENERGY(1/CM) J TAU PRTY SIG INDX 1 .0000000 0 1 0 30 1 1 2 37.1637700 1 2 0 31 3 2 3 70.1310700 2 1 0 34 5 3 4 95.1933700 2 3 1 39 5 4 5 136.5536500 2 5 0 44 5 5 ======================================================================================================================== STANDARD MOLSCAT POTENL ROUTINE (AUG 94) CALLED FOR POTENTIAL. /POTL/ DATA ARE -- POTENTIAL IS **NOT** EXPANDED IN ANGULAR FUNCTIONS. A SUITABLE VRTP ROUTINE MUST BE SUPPLIED. THIS IS A MOCK H2O-HE POTENTIAL FOR TESTING PURPOSE YOU MUST SUPPLY AN APPROPRIATE VRTP ROUTINE *** INITIALIZATION OF VRTP *** L M A 0 0 162754.800 1 0 -29296.000 2 0 1367.000 2 2 26041.000 3 0 19531.000 3 2 -26041.000 4 0 -9756.000 4 2 8138.000 4 4 6510.000 ICNSYM INPUT OR FROM VRTP SPECIFIES AXIAL SYMMETRY, ICNSYM = 2 10-POINT GAUSSIAN QUADRATURE REQUESTED TO PROJECT COMMON THETA-1 COMPONENT 6-POINT QUADRATURE REQUESTED TO PROJECT OUT PHI COMPONENTS ANGULAR DEPENDENCE OF POTENTIAL EXPANDED IN TERMS OF NORMALISED SPHERICAL HARMONICS: (Y(LAM,MU) + (-)**MU Y(LAM,-MU)) / (1+DELTA(MU,0)) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 1 WHICH HAS LAMBDA = 0 ABS(MU)= 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 2 WHICH HAS LAMBDA = 1 ABS(MU)= 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 3 WHICH HAS LAMBDA = 2 ABS(MU)= 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 4 WHICH HAS LAMBDA = 2 ABS(MU)= 2 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 5 WHICH HAS LAMBDA = 3 ABS(MU)= 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 6 WHICH HAS LAMBDA = 3 ABS(MU)= 2 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 7 WHICH HAS LAMBDA = 4 ABS(MU)= 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 8 WHICH HAS LAMBDA = 4 ABS(MU)= 2 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 9 WHICH HAS LAMBDA = 4 ABS(MU)= 4 NUMBER OF UNIQUE POWERS = 0 POTENL PROCESSING FINISHED. ENERGY IN UNITS OF EPSILON = 130.00000 CM-1 R IN UNITS OF RM = 2.90000 ANGSTROMS MXLAM = 9 NPOTL = 9 ======================================================================================================================== REVIEW OF REQUESTED PRESSURE BROADENING CALCULATION. ****** THIS IS OFF-DIAGONAL VERSION (DEC 88) ****** PRESSURE-BROADENING LINE-SHAPE CALCULATION REQUESTED FOR 1 LINES. LINE LEV(A) LEV(B) LEV(A1) LEV(B1) 1 1 2 1 2 LEVELS 1 (JA = 0 ), 2 (JB = 1 ) **TO** LEVELS 1 (JA1 = 0 ), 2 (JB1 = 1 ) WILL BE PROCESSED FOR DIPOLE RADIATION. AT RELATIVE K.E. = 300.000000000 (1/CM) WITH 1-TH AND 2-TH ENERGY VALUES RESPECTIVELY. MODIFIED ENERGY LIST NOW CONTAINS 2 VALUES, ENERGY( 1) = 337.163770000 ENERGY( 2) = 300.000000000 LINE-SHAPE TABLES HAVE BEEN MODIFIED ACCORDINGLY. *** *** IN-CORE DA SIMULATION ROUTINE HAS CONTROL. *** *** DA FILE WILL NOT BE USED. *** *** NUMBER OF SIMULATED RECORDS = 20000 ======================================================================================================================== 0 STATE-TO-STATE INTEGRAL CROSS-SECTIONS WILL BE COMPUTED BUT NOT STORED ON DISK ======================================================================================================================== INITIALIZATION DONE. TIME WAS .03 CPU SECS. 698 WORDS OF STORAGE USED. 1============================= TEST ITYPE=26, H2O-HE / POTL PROJECTED VIA VRTP (2 OF 5) ============================= ANGULAR MOMENTUM JTOT = 10 **************************** JTOT= 10. 1 E( 1)= 337.164, MAX D/O-D= 1.4D+00 2.1D-01 TIME= JTOT= 10. 1 E( 2)= 300.000, MAX D/O-D= 1.3D+00 2.4D-01 TIME= JTOT= 10. 2 E( 1)= 337.164, MAX D/O-D= 2.2D+00 3.5D-01 TIME= JTOT= 10. 2 E( 2)= 300.000, MAX D/O-D= 1.1D+00 4.1D-01 TIME= JTOT= 10. 3 E( 1)= 337.164, MAX D/O-D= 1.5D+00 3.4D-01 TIME= JTOT= 10. 3 E( 2)= 300.000, MAX D/O-D= 2.0D+00 3.8D-01 TIME= ACCUMULATED PRESSURE-BROADENING CROSS SECTIONS (IN ANG**2) LINE LEV(A) LEV(B) LEV(A1) LEV(B1) TYPE EREL(1/CM) RE(S) IM(S) 1 1 2 1 2 DIPOLE 300.000000000 .695622D+00 -.420542D-01 1TEST ITYPE=26, H2O-HE / POTL PROJECTED VIA VRTP (2 OF 5) ENERGY JTOTL JSTEP JTOTU F I SIG(F,I) 337.163770 10 1 10 1 1 1.411990D+00 337.163770 10 1 10 2 1 1.890707D-01 337.163770 10 1 10 3 1 2.132027D-01 337.163770 10 1 10 5 1 1.844333D-01 337.163770 10 1 10 1 2 7.083088D-02 337.163770 10 1 10 2 2 2.831650D-01 337.163770 10 1 10 3 2 2.184975D-01 337.163770 10 1 10 4 2 1.778209D-01 337.163770 10 1 10 5 2 2.012738D-01 337.163770 10 1 10 1 3 5.383928D-02 337.163770 10 1 10 2 3 1.472836D-01 337.163770 10 1 10 3 3 8.884938D-01 337.163770 10 1 10 4 3 3.863625D-01 337.163770 10 1 10 5 3 1.148622D-01 337.163770 10 1 10 2 4 1.322796D-01 337.163770 10 1 10 3 4 4.263803D-01 337.163770 10 1 10 4 4 1.953220D+00 337.163770 10 1 10 5 4 3.593232D-01 337.163770 10 1 10 1 5 6.199510D-02 337.163770 10 1 10 2 5 1.805955D-01 337.163770 10 1 10 3 5 1.528934D-01 337.163770 10 1 10 4 5 4.334057D-01 337.163770 10 1 10 5 5 4.427193D+00 300.000000 10 1 10 1 1 1.616450D-01 300.000000 10 1 10 2 1 2.198449D-01 300.000000 10 1 10 3 1 2.439490D-01 300.000000 10 1 10 5 1 1.962735D-01 300.000000 10 1 10 1 2 8.364329D-02 300.000000 10 1 10 2 2 1.309239D+00 300.000000 10 1 10 3 2 2.357915D-01 300.000000 10 1 10 4 2 2.192656D-01 300.000000 10 1 10 5 2 2.135919D-01 300.000000 10 1 10 1 3 6.367516D-02 300.000000 10 1 10 2 3 1.617649D-01 300.000000 10 1 10 3 3 3.134718D+00 300.000000 10 1 10 4 3 4.468870D-01 300.000000 10 1 10 5 3 1.104882D-01 300.000000 10 1 10 2 4 1.688352D-01 300.000000 10 1 10 3 4 5.015729D-01 300.000000 10 1 10 4 4 3.854695D+00 300.000000 10 1 10 5 4 3.805562D-01 300.000000 10 1 10 1 5 7.205060D-02 300.000000 10 1 10 2 5 2.060849D-01 300.000000 10 1 10 3 5 1.553892D-01 300.000000 10 1 10 4 5 4.768564D-01 300.000000 10 1 10 5 5 2.433214D+00 1============================= TEST ITYPE=26, H2O-HE / POTL PROJECTED VIA VRTP (2 OF 5) ============================= ACCUMULATED PRESSURE-BROADENING CROSS SECTIONS (IN ANG**2) LINE LEV(A) LEV(B) LEV(A1) LEV(B1) TYPE EREL(1/CM) RE(S) IM(S) 1 1 2 1 2 DIPOLE 300.000000000 .695622D+00 -.420542D-01 *** IN-CORE DA SIMULATOR USED 6 OF THE 20000 ALLOCATED RECORDS ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN, VERSION 14 (AUG 94) | | | | THIS RUN USED 5.68 CPU SECS AND 1223 OF THE ALLOCATED 1000000 WORDS OF STORAGE | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN | | VERSION 1 BY S. GREEN (NOV 1973); THIS IS VERSION 14 (AUG 94) | | | | RUN ON 31 Aug 1994 AT 11:42:52 | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- PUBLICATIONS RESULTING FROM THE USE OF THIS PROGRAM SHOULD REFER TO J. M. HUTSON AND S. GREEN, MOLSCAT COMPUTER CODE, VERSION 14 (AUG 94) DISTRIBUTED BY COLLABORATIVE COMPUTATIONAL PROJECT NO. 6 OF THE SCIENCE AND ENGINEERING RESEARCH COUNCIL (UK) /INPUT/ DATA ARE -- RUN LABEL = TEST ITYPE= 6, H2O-HE / MODEL POTL / (3 OF 5) SCRATCH CORE STORAGE ALLOCATION IS 1000000(8-BYTE) WORDS ( 7812.50 KBYTES) 2 INTEGER(S) CAN BE STORED IN EACH WORD. INTEGRATOR REQUESTED BY INPUT VALUE INTFLG = 7 COUPLED EQUATIONS SOLVED BY QUASIADIABATIC MODIFIED LOG DERIVATIVE METHOD OF MANOLOPOULOS INTEGRATION PARAMETERS ARE RMIN = .50 STEPS = 6.0 RMAX = 5.00 IRXSET = 1 OPTION. RMAX ADJUSTED AUTOMATICALLY FOR EACH NEW JTOT,MVAL IRMSET = 8 OPTION. RMIN CHOSEN AUTOMATICALLY FOR EACH NEW JTOT ENERGY-INDEPENDENT MATRICES WILL BE SAVED TEMPORARILY ON UNIT 1 REDUCED MASS FOR COLLISION = 3.270000000 A.M.U. CONTROL DATA FOR TOTAL ANGULAR MOMENTUM IS JTOT FROM 10 TO 11 IN STEPS OF 1 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. CONTROL DATA FOR TOTAL ENERGIES. CALCULATIONS WILL BE PERFORMED FOR 1 VALUES ENERGY NO. 1 = 300.000000000 (1/CM) = .037195273076 E.V. THESE ENERGY VALUES WILL BE USED AS RELATIVE (CENTER OF MASS) VALUES AND LIST MAY BE MODIFIED ACCORDINGLY. PRINT LEVEL (PRNTLV) = 1 OTHER PRINT CONTROLS ISIGPR = 1 ITHROW = 0 ======================================================================================================================== /BASIS/ DATA ARE -- 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. COLLISION TYPE IS ASYMMETRIC TOP - ATOM ILLEGAL UNIT = 0 SPECIFIED FOR IASYMU, DEFAULTED TO 5 ASYMMETRIC TOP BASIS WILL BE INPUT FROM UNIT IASYMU = 5 5 INPUT LEVELS SPECIFIED BY NLEVEL. 0 INPUT LEVEL 1 J, TAU = 0 1 ENERGY = .00000 = .00000 (1/CM) INPUT COEFFICIENTS ARE 1.000000( 0) 0 INPUT LEVEL 2 J, TAU = 1 2 ENERGY = 37.16377 = 37.16377 (1/CM) INPUT COEFFICIENTS ARE .000000( -1) 1.000000( 0) .000000( 1) 0 INPUT LEVEL 3 J, TAU = 2 1 ENERGY = 70.13107 = 70.13107 (1/CM) INPUT COEFFICIENTS ARE -.557980( -2) .000000( -1) .614260( 0) .000000( 1) -.557980( 2) 0 INPUT LEVEL 4 J, TAU = 2 3 ENERGY = 95.19337 = 95.19337 (1/CM) INPUT COEFFICIENTS ARE -.707107( -2) .000000( -1) .000000( 0) .000000( 1) .707107( 2) 0 INPUT LEVEL 5 J, TAU = 2 5 ENERGY = 136.55365 = 136.55365 (1/CM) INPUT COEFFICIENTS ARE -.434348( -2) .000000( -1) -.789103( 0) .000000( 1) -.434348( 2) 0 CHECK6. INPUT FUNCTIONS WILL BE CHECKED FOR ORTHOGONALITY. LEVEL ENERGY(1/CM) J TAU PRTY SIG INDX 1 .0000000 0 1 0 30 1 1 2 37.1637700 1 2 0 31 3 2 3 70.1310700 2 1 0 34 5 3 4 95.1933700 2 3 1 39 5 4 5 136.5536500 2 5 0 44 5 5 ======================================================================================================================== STANDARD MOLSCAT POTENL ROUTINE (AUG 94) CALLED FOR POTENTIAL. /POTL/ DATA ARE -- ANGULAR DEPENDENCE OF POTENTIAL EXPANDED IN TERMS OF NORMALISED SPHERICAL HARMONICS: (Y(LAM,MU) + (-)**MU Y(LAM,-MU)) / (1+DELTA(MU,0)) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 1 WHICH HAS LAMBDA = 0 ABS(MU)= 0 .16275480D+06 * EXP( -12.0000 * R ) -.20000000D+01 * R ** -6 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 2 WHICH HAS LAMBDA = 1 ABS(MU)= 0 -.29296000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 3 WHICH HAS LAMBDA = 2 ABS(MU)= 0 .13670000D+04 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 4 WHICH HAS LAMBDA = 2 ABS(MU)= 2 .26041000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 5 WHICH HAS LAMBDA = 3 ABS(MU)= 0 .19531000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 6 WHICH HAS LAMBDA = 3 ABS(MU)= 2 -.26041000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 7 WHICH HAS LAMBDA = 4 ABS(MU)= 0 -.97560000D+04 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 8 WHICH HAS LAMBDA = 4 ABS(MU)= 2 .81380000D+04 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 9 WHICH HAS LAMBDA = 4 ABS(MU)= 4 .65100000D+04 * EXP( -12.0000 * R ) NUMBER OF UNIQUE POWERS = 1 POWER 1 = -6 POTENL PROCESSING FINISHED. ENERGY IN UNITS OF EPSILON = 130.00000 CM-1 R IN UNITS OF RM = 2.90000 ANGSTROMS MXLAM = 9 NPOTL = 9 ======================================================================================================================== REVIEW OF REQUESTED PRESSURE BROADENING CALCULATION. ****** THIS IS OFF-DIAGONAL VERSION (DEC 88) ****** PRESSURE-BROADENING LINE-SHAPE CALCULATION REQUESTED FOR 1 LINES. LINE LEV(A) LEV(B) LEV(A1) LEV(B1) 1 1 2 1 2 LEVELS 1 (JA = 0 ), 2 (JB = 1 ) **TO** LEVELS 1 (JA1 = 0 ), 2 (JB1 = 1 ) WILL BE PROCESSED FOR DIPOLE RADIATION. AT RELATIVE K.E. = 300.000000000 (1/CM) WITH 1-TH AND 2-TH ENERGY VALUES RESPECTIVELY. MODIFIED ENERGY LIST NOW CONTAINS 2 VALUES, ENERGY( 1) = 337.163770000 ENERGY( 2) = 300.000000000 LINE-SHAPE TABLES HAVE BEEN MODIFIED ACCORDINGLY. *** *** IN-CORE DA SIMULATION ROUTINE HAS CONTROL. *** *** DA FILE WILL NOT BE USED. *** *** NUMBER OF SIMULATED RECORDS = 20000 ======================================================================================================================== 0 STATE-TO-STATE INTEGRAL CROSS-SECTIONS WILL BE COMPUTED BUT NOT STORED ON DISK ======================================================================================================================== INITIALIZATION DONE. TIME WAS .02 CPU SECS. 158 WORDS OF STORAGE USED. 1============================= TES TEST ITYPE= 6, H2O-HE / MODEL POTL / (3 OF 5) F 5) ============================= ANGULAR MOMENTUM JTOT = 10 **************************** JTOT= 10. 1 E( 1)= 337.164, MAX D/O-D= 1.4D+00 2.2D-01 TIME= JTOT= 10. 1 E( 2)= 300.000, MAX D/O-D= 1.3D+00 2.5D-01 TIME= JTOT= 10. 2 E( 1)= 337.164, MAX D/O-D= 1.5D+00 2.2D-01 TIME= JTOT= 10. 2 E( 2)= 300.000, MAX D/O-D= 2.2D+00 2.5D-01 TIME= ACCUMULATED PRESSURE-BROADENING CROSS SECTIONS (IN ANG**2) LINE LEV(A) LEV(B) LEV(A1) LEV(B1) TYPE EREL(1/CM) RE(S) IM(S) 1 1 2 1 2 DIPOLE 300.000000000 .212703D+00 .131156D-01 ANGULAR MOMENTUM JTOT = 11 **************************** JTOT= 11. 1 E( 1)= 337.164, MAX D/O-D= 1.3D+00 2.4D-01 TIME= JTOT= 11. 1 E( 2)= 300.000, MAX D/O-D= 1.4D+00 2.7D-01 TIME= JTOT= 11. 2 E( 1)= 337.164, MAX D/O-D= 1.8D+00 2.4D-01 TIME= JTOT= 11. 2 E( 2)= 300.000, MAX D/O-D= 2.4D+00 2.7D-01 TIME= ACCUMULATED PRESSURE-BROADENING CROSS SECTIONS (IN ANG**2) LINE LEV(A) LEV(B) LEV(A1) LEV(B1) TYPE EREL(1/CM) RE(S) IM(S) 1 1 2 1 2 DIPOLE 300.000000000 .971335D+00 -.302658D-01 1 TEST ITYPE= 6, H2O-HE / MODEL POTL / (3 OF 5) ENERGY JTOTL JSTEP JTOTU F I SIG(F,I) 337.163770 10 1 11 1 1 1.610876D+00 337.163770 10 1 11 2 1 4.394719D-01 337.163770 10 1 11 3 1 4.442302D-01 337.163770 10 1 11 4 1 2.631126D-03 337.163770 10 1 11 5 1 3.919106D-01 337.163770 10 1 11 1 2 1.646378D-01 337.163770 10 1 11 2 2 2.762334D+00 337.163770 10 1 11 3 2 4.448602D-01 337.163770 10 1 11 4 2 4.199436D-01 337.163770 10 1 11 5 2 4.104060D-01 337.163770 10 1 11 1 3 1.121798D-01 337.163770 10 1 11 2 3 2.998691D-01 337.163770 10 1 11 3 3 4.396709D+00 337.163770 10 1 11 4 3 8.161676D-01 337.163770 10 1 11 5 3 2.048124D-01 337.163770 10 1 11 1 4 7.332470D-04 337.163770 10 1 11 2 4 3.123930D-01 337.163770 10 1 11 3 4 9.007029D-01 337.163770 10 1 11 4 4 4.084636D+00 337.163770 10 1 11 5 4 7.006266D-01 337.163770 10 1 11 1 5 1.317362D-01 337.163770 10 1 11 2 5 3.682420D-01 337.163770 10 1 11 3 5 2.726263D-01 337.163770 10 1 11 4 5 8.450766D-01 337.163770 10 1 11 5 5 5.168511D+00 300.000000 10 1 11 1 1 1.581296D+00 300.000000 10 1 11 2 1 5.109579D-01 300.000000 10 1 11 3 1 4.997181D-01 300.000000 10 1 11 4 1 3.062527D-03 300.000000 10 1 11 5 1 4.087994D-01 300.000000 10 1 11 1 2 1.944016D-01 300.000000 10 1 11 2 2 4.328588D+00 300.000000 10 1 11 3 2 4.788539D-01 300.000000 10 1 11 4 2 5.048486D-01 300.000000 10 1 11 5 2 4.240625D-01 300.000000 10 1 11 1 3 1.304356D-01 300.000000 10 1 11 2 3 3.285181D-01 300.000000 10 1 11 3 3 5.093308D+00 300.000000 10 1 11 4 3 9.241628D-01 300.000000 10 1 11 5 3 1.918015D-01 300.000000 10 1 11 1 4 8.971956D-04 300.000000 10 1 11 2 4 3.887350D-01 300.000000 10 1 11 3 4 1.037253D+00 300.000000 10 1 11 4 4 4.591934D+00 300.000000 10 1 11 5 4 7.312746D-01 300.000000 10 1 11 1 5 1.500674D-01 300.000000 10 1 11 2 5 4.091581D-01 300.000000 10 1 11 3 5 2.697473D-01 300.000000 10 1 11 4 5 9.163245D-01 300.000000 10 1 11 5 5 6.864163D+00 1============================= TES TEST ITYPE= 6, H2O-HE / MODEL POTL / (3 OF 5) F 5) ============================= ACCUMULATED PRESSURE-BROADENING CROSS SECTIONS (IN ANG**2) LINE LEV(A) LEV(B) LEV(A1) LEV(B1) TYPE EREL(1/CM) RE(S) IM(S) 1 1 2 1 2 DIPOLE 300.000000000 .971335D+00 -.302658D-01 *** IN-CORE DA SIMULATOR USED 18 OF THE 20000 ALLOCATED RECORDS ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN, VERSION 14 (AUG 94) | | | | THIS RUN USED 2.98 CPU SECS AND 1633 OF THE ALLOCATED 1000000 WORDS OF STORAGE | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN | | VERSION 1 BY S. GREEN (NOV 1973); THIS IS VERSION 14 (AUG 94) | | | | RUN ON 31 Aug 1994 AT 11:42:59 | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- PUBLICATIONS RESULTING FROM THE USE OF THIS PROGRAM SHOULD REFER TO J. M. HUTSON AND S. GREEN, MOLSCAT COMPUTER CODE, VERSION 14 (AUG 94) DISTRIBUTED BY COLLABORATIVE COMPUTATIONAL PROJECT NO. 6 OF THE SCIENCE AND ENGINEERING RESEARCH COUNCIL (UK) /INPUT/ DATA ARE -- RUN LABEL = IOS TEST / H2O-HE / MODEL POTL STD EXPANSION / (4 OF 5) SCRATCH CORE STORAGE ALLOCATION IS 1000000(8-BYTE) WORDS ( 7812.50 KBYTES) 2 INTEGER(S) CAN BE STORED IN EACH WORD. INTEGRATOR REQUESTED BY INPUT VALUE INTFLG = -1 EQUATIONS SOLVED BY WKB APPROXIMATION WITH GAUSS-MEHLER INTEGRATION. SEE R. T PACK, JCP 60, 633 (1974). NOTE THAT THIS IS IMPLEMENTED ONLY FOR ONE CHANNEL CASES, E.G., IOS CALCULATIONS. INTEGRATION PARAMETERS ARE RMIN = .5000D+00 STEST = .2000D-02 NGMP = 18 ( 1) 22 IRXSET = 1 OPTION. RMAX ADJUSTED AUTOMATICALLY FOR EACH NEW JTOT,MVAL REDUCED MASS FOR COLLISION = 3.270000000 A.M.U. CONTROL DATA FOR TOTAL ANGULAR MOMENTUM IS JTOT FROM 10 TO 10 IN STEPS OF 1 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. CONTROL DATA FOR TOTAL ENERGIES. CALCULATIONS WILL BE PERFORMED FOR 1 VALUES ENERGY NO. 1 = 300.000000000 (1/CM) = .037195273076 E.V. PRINT LEVEL (PRNTLV) = 3 OTHER PRINT CONTROLS ISIGPR = 1 ITHROW = 0 ======================================================================================================================== /BASIS/ DATA ARE -- ******************* ****** I O S ****** ******************* 0 PROCESSED BY IOSBIN ROUTINE (FEB 94). 0 INPUT ITYPE = 106 0 ILLEGAL UNIT = 0 SPECIFIED FOR IASYMU, CHANGED TO 5 0 ASYMMETRIC TOP BASIS WILL BE INPUT FROM UNIT IASYMU = 5 0 NUMBER OF REQUESTED LEVELS, NLEVEL = 5 0 INPUT LEVEL 1 J, TAU = 0 1 INPUT COEFFICIENTS ARE 1.000000( 0) 0 INPUT LEVEL 2 J, TAU = 1 2 INPUT COEFFICIENTS ARE .000000( -1) 1.000000( 0) .000000( 1) 0 INPUT LEVEL 3 J, TAU = 2 1 INPUT COEFFICIENTS ARE -.557980( -2) .000000( -1) .614260( 0) .000000( 1) -.557980( 2) 0 INPUT LEVEL 4 J, TAU = 2 3 INPUT COEFFICIENTS ARE -.707107( -2) .000000( -1) .000000( 0) .000000( 1) .707107( 2) 0 INPUT LEVEL 5 J, TAU = 2 5 INPUT COEFFICIENTS ARE -.434348( -2) .000000( -1) -.789103( 0) .000000( 1) -.434348( 2) 0 CHCK6I. INPUT FUNCTIONS WILL BE CHECKED FOR ORTHOGONALITY. ======================================================================================================================== STANDARD MOLSCAT POTENL ROUTINE (AUG 94) CALLED FOR POTENTIAL. /POTL/ DATA ARE -- ANGULAR DEPENDENCE OF POTENTIAL EXPANDED IN TERMS OF NORMALISED SPHERICAL HARMONICS: (Y(LAM,MU) + (-)**MU Y(LAM,-MU)) / (1+DELTA(MU,0)) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 1 WHICH HAS LAMBDA = 0 ABS(MU)= 0 .16275480D+06 * EXP( -12.0000 * R ) -.20000000D+01 * R ** -6 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 2 WHICH HAS LAMBDA = 1 ABS(MU)= 0 -.29296000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 3 WHICH HAS LAMBDA = 2 ABS(MU)= 0 .13670000D+04 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 4 WHICH HAS LAMBDA = 2 ABS(MU)= 2 .26041000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 5 WHICH HAS LAMBDA = 3 ABS(MU)= 0 .19531000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 6 WHICH HAS LAMBDA = 3 ABS(MU)= 2 -.26041000D+05 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 7 WHICH HAS LAMBDA = 4 ABS(MU)= 0 -.97560000D+04 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 8 WHICH HAS LAMBDA = 4 ABS(MU)= 2 .81380000D+04 * EXP( -12.0000 * R ) INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 9 WHICH HAS LAMBDA = 4 ABS(MU)= 4 .65100000D+04 * EXP( -12.0000 * R ) NUMBER OF UNIQUE POWERS = 1 POWER 1 = -6 POTENL PROCESSING FINISHED. ENERGY IN UNITS OF EPSILON = 130.00000 CM-1 R IN UNITS OF RM = 2.90000 ANGSTROMS MXLAM = 9 NPOTL = 9 IVCHK. IV() INDEXING IS NOT REQUESTED. ======================================================================================================================== 0 IOSDRV ENTERED. SET-UP FOR INFINITE ORDER SUDDEN CALCULATION. 0 * * * NOTE. * * * NOTE. USE WILL BE MADE OF 2-FOLD SYMMETRY ABOUT Z-AXIS. * * * NOTE. 0 * * * NOTE. IPHIFL (PHI INTEGRATION FLAG) = 0 0 * * * NOTE. NGL = 9 TAKEN FROM &BASIS IOSNGP(1) = 9 0 * * * NOTE. NGM SET FROM &BASIS IOSNGP(2) = 3 0 THETA INTEGRATION DONE BY 9-POINT GAUSSIAN QUADRATURE. POINTS/WEIGHTS ARE -.968160 .081274 -.836031 .180648 -.613371 .260611 -.324253 .312347 .000000 .330239 .324253 .312347 .613371 .260611 .836031 .180648 .968160 .081274 0 PHI INTEGRATION DONE BY 3-POINT GAUSS-MEHLER CHEBYSCHEV) QUADRATURE. POINTS/WEIGHTS ARE .261799 .523599 .785398 .523599 1.308997 .523599 0 ABOVE WEIGHTS MULTIPLIED BY SYMMETRY FACTOR = .40000000D+01 0 LMAX TAKEN FROM &INPUT LMAX = 6 0 MMAX TAKEN FROM &INPUT MMAX = 2 0 STORAGE ALLOCATED FOR NVC (NO. VIB. CHANNELS) = 1 NGPT (NO. GAUSS PTS.) = 27 LMAX (NO. LEGENDRE COEFFS.) = 12 MXXXXL (NO. SYMMETRIES IN POTL) = 9 NQL (NO. QLT) = 22 NIXQL (NO. INDICES IN IXQL) = 3 NEXT LOCATION = 805 0 SPHERICAL HARMONIC SYMMETRIES FOR EXPANDING S-MATRIX ARE AS FOLLOWS 0 INDX L M 1 0 0 2 1 0 3 2 0 4 2 2 5 3 0 6 3 2 7 4 0 8 4 2 9 5 0 10 5 2 11 6 0 12 6 2 0 BELOW ARE INDICES TO SYMMETRIES IN QLT 0 IN QLT LM1 L M LM2 L M CODE 1 1 0 0 1 0 0 0 2 2 1 0 2 1 0 0 3 3 2 0 3 2 0 0 4 4 2 2 3 2 0 1 5 4 2 2 3 2 0 2 6 4 2 2 4 2 2 0 7 5 3 0 5 3 0 0 8 6 3 2 5 3 0 1 9 6 3 2 5 3 0 2 10 6 3 2 6 3 2 0 11 7 4 0 7 4 0 0 12 8 4 2 7 4 0 1 13 8 4 2 7 4 0 2 14 8 4 2 8 4 2 0 15 9 5 0 9 5 0 0 16 10 5 2 9 5 0 1 17 10 5 2 9 5 0 2 18 10 5 2 10 5 2 0 19 11 6 0 11 6 0 0 20 12 6 2 11 6 0 1 21 12 6 2 11 6 0 2 22 12 6 2 12 6 2 0 0 TIME TO SET UP CALCULATION WAS .03 SECONDS. EXIT IOSDRV 0======================================================================================================================== 1 IOSCLC (MAY 92). ENERGY( 1) = 300.0000 (1/CM). 0 ***** PARTIAL WAVE = 10 FOR ENERGY( 1) = 300.0000 ***** 1 ***** ***** ***** END OF CALCULATION FOR ENERGY = 300.0000 (1/CM) ***** ***** ***** PARTIAL WAVES 10 ( 1 ) 10 0 ***** ***** ***** TIME WAS .06 SEC. 0 ***** ***** STORAGE SO FAR USED 815 OF THE 1000000 AVAILABLE WORDS. 0 FOR ORIENTATION 1 SIG( 1, 1) = 2.7605E+00 0 FOR ORIENTATION 2 SIG( 1, 1) = 1.1128E+00 0 FOR ORIENTATION 3 SIG( 1, 1) = 1.8801E-02 0 FOR ORIENTATION 4 SIG( 1, 1) = 2.8548E+00 0 FOR ORIENTATION 5 SIG( 1, 1) = 4.2205E+00 0 FOR ORIENTATION 6 SIG( 1, 1) = 2.8230E-01 0 FOR ORIENTATION 7 SIG( 1, 1) = 6.7890E-01 0 FOR ORIENTATION 8 SIG( 1, 1) = 4.5334E+00 0 FOR ORIENTATION 9 SIG( 1, 1) = 1.5066E+00 0 FOR ORIENTATION 10 SIG( 1, 1) = 1.8889E+00 0 FOR ORIENTATION 11 SIG( 1, 1) = 3.4713E+00 0 FOR ORIENTATION 12 SIG( 1, 1) = 1.8903E+00 0 FOR ORIENTATION 13 SIG( 1, 1) = 4.4264E+00 0 FOR ORIENTATION 14 SIG( 1, 1) = 1.4683E-06 0 FOR ORIENTATION 15 SIG( 1, 1) = 7.7507E-01 0 FOR ORIENTATION 16 SIG( 1, 1) = 1.0489E-01 0 FOR ORIENTATION 17 SIG( 1, 1) = 1.9176E+00 0 FOR ORIENTATION 18 SIG( 1, 1) = 1.2010E-02 0 FOR ORIENTATION 19 SIG( 1, 1) = 1.5012E-01 0 FOR ORIENTATION 20 SIG( 1, 1) = 4.8372E-01 0 FOR ORIENTATION 21 SIG( 1, 1) = 1.5994E-01 0 FOR ORIENTATION 22 SIG( 1, 1) = 4.9627E-02 0 FOR ORIENTATION 23 SIG( 1, 1) = 5.3770E-02 0 FOR ORIENTATION 24 SIG( 1, 1) = 2.7737E-01 0 FOR ORIENTATION 25 SIG( 1, 1) = 1.8464E-01 0 FOR ORIENTATION 26 SIG( 1, 1) = 1.8903E-01 0 FOR ORIENTATION 27 SIG( 1, 1) = 2.0420E-01 0 AVERAGE OVER ORIENTATIONS SIG( 1, 1) = 1.3895E+00 1 STATE-TO-STATE CROSS SECTIONS (IN ANG**2) FOR KINETIC ENERGY = 300.0000 (1/CM). 0 PROCESSED BY IOSOUT (FEB 92). 0 0 ACCUMULATED Q(L,M1,M2) ARE AS FOLLOWS QLS( 0 0 0) = -9.27341E-01 QLT( 0 0 0) = 4.62152E-01 QLT( 1 0 0) = 1.59313E-01 QLT( 2 0 0) = 4.71585E-02 REAL QLT( 2 2 0) = 9.15987E-04 IMAG QLT( 2 2 0) = -2.94655E-02 QLT( 2 2 2) = 1.84284E-02 QLT( 3 0 0) = 2.40335E-02 REAL QLT( 3 2 0) = -2.29883E-04 IMAG QLT( 3 2 0) = -4.98996E-03 QLT( 3 2 2) = 1.03824E-03 QLT( 4 0 0) = 3.49569E-02 REAL QLT( 4 2 0) = -2.23361E-02 IMAG QLT( 4 2 0) = 1.24838E-02 QLT( 4 2 2) = 1.87301E-02 QLT( 5 0 0) = 8.71275E-03 REAL QLT( 5 2 0) = 3.03670E-03 IMAG QLT( 5 2 0) = -6.03712E-03 QLT( 5 2 2) = 5.24156E-03 QLT( 6 0 0) = 2.70624E-03 REAL QLT( 6 2 0) = -8.84739E-03 IMAG QLT( 6 2 0) = 5.34253E-04 QLT( 6 2 2) = 2.90299E-02 0 INITIAL LEVEL = 1 J, TAU, PARITY = 0 1 0 1 4.6215E-01 2 1.5931E-01 3 3.9488E-02 4 0.0000E+00 5 4.4527E-02 0 INITIAL LEVEL = 2 J, TAU, PARITY = 1 2 0 1 5.3104E-02 2 4.8102E-01 3 4.4369E-02 4 2.4571E-02 5 7.2634E-02 0 INITIAL LEVEL = 3 J, TAU, PARITY = 2 1 0 1 7.8976E-03 2 2.6622E-02 3 4.8462E-01* 4 6.7534E-02 5 1.6526E-02* 0 INITIAL LEVEL = 4 J, TAU, PARITY = 2 3 1 1 0.0000E+00 2 1.4743E-02 3 6.7534E-02 4 4.7590E-01* 5 4.1134E-02 0 INITIAL LEVEL = 5 J, TAU, PARITY = 2 5 0 1 8.9055E-03 2 4.3580E-02 3 1.6526E-02* 4 4.1134E-02 5 4.7383E-01* 0 ***** NOTE. FOR CROSS SECTIONS MARKED WITH A STAR, SOME CONTRIBUTING Q(L) ARE NOT AVAILABLE. ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN, VERSION 14 (AUG 94) | | | | THIS RUN USED .16 CPU SECS AND 815 OF THE ALLOCATED 1000000 WORDS OF STORAGE | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN | | VERSION 1 BY S. GREEN (NOV 1973); THIS IS VERSION 14 (AUG 94) | | | | RUN ON 31 Aug 1994 AT 11:42:59 | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- PUBLICATIONS RESULTING FROM THE USE OF THIS PROGRAM SHOULD REFER TO J. M. HUTSON AND S. GREEN, MOLSCAT COMPUTER CODE, VERSION 14 (AUG 94) DISTRIBUTED BY COLLABORATIVE COMPUTATIONAL PROJECT NO. 6 OF THE SCIENCE AND ENGINEERING RESEARCH COUNCIL (UK) /INPUT/ DATA ARE -- RUN LABEL = IOS TEST / H2O-HE (MODEL POTL) VIA VRTP ROUTINE / (5 OF 5) SCRATCH CORE STORAGE ALLOCATION IS 1000000(8-BYTE) WORDS ( 7812.50 KBYTES) 2 INTEGER(S) CAN BE STORED IN EACH WORD. INTEGRATOR REQUESTED BY INPUT VALUE INTFLG = -1 EQUATIONS SOLVED BY WKB APPROXIMATION WITH GAUSS-MEHLER INTEGRATION. SEE R. T PACK, JCP 60, 633 (1974). NOTE THAT THIS IS IMPLEMENTED ONLY FOR ONE CHANNEL CASES, E.G., IOS CALCULATIONS. INTEGRATION PARAMETERS ARE RMIN = .5000D+00 STEST = .2000D-02 NGMP = 18 ( 1) 22 IRXSET = 1 OPTION. RMAX ADJUSTED AUTOMATICALLY FOR EACH NEW JTOT,MVAL REDUCED MASS FOR COLLISION = 3.270000000 A.M.U. CONTROL DATA FOR TOTAL ANGULAR MOMENTUM IS JTOT FROM 10 TO 10 IN STEPS OF 1 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. CONTROL DATA FOR TOTAL ENERGIES. CALCULATIONS WILL BE PERFORMED FOR 1 VALUES ENERGY NO. 1 = 300.000000000 (1/CM) = .037195273076 E.V. PRINT LEVEL (PRNTLV) = 3 OTHER PRINT CONTROLS ISIGPR = 1 ITHROW = 0 ======================================================================================================================== /BASIS/ DATA ARE -- ******************* ****** I O S ****** ******************* 0 PROCESSED BY IOSBIN ROUTINE (FEB 94). 0 INPUT ITYPE = 106 0 ILLEGAL UNIT = 0 SPECIFIED FOR IASYMU, CHANGED TO 5 0 ASYMMETRIC TOP BASIS WILL BE INPUT FROM UNIT IASYMU = 5 0 NUMBER OF REQUESTED LEVELS, NLEVEL = 5 0 INPUT LEVEL 1 J, TAU = 0 1 INPUT COEFFICIENTS ARE 1.000000( 0) 0 INPUT LEVEL 2 J, TAU = 1 2 INPUT COEFFICIENTS ARE .000000( -1) 1.000000( 0) .000000( 1) 0 INPUT LEVEL 3 J, TAU = 2 1 INPUT COEFFICIENTS ARE -.557980( -2) .000000( -1) .614260( 0) .000000( 1) -.557980( 2) 0 INPUT LEVEL 4 J, TAU = 2 3 INPUT COEFFICIENTS ARE -.707107( -2) .000000( -1) .000000( 0) .000000( 1) .707107( 2) 0 INPUT LEVEL 5 J, TAU = 2 5 INPUT COEFFICIENTS ARE -.434348( -2) .000000( -1) -.789103( 0) .000000( 1) -.434348( 2) 0 CHCK6I. INPUT FUNCTIONS WILL BE CHECKED FOR ORTHOGONALITY. ======================================================================================================================== STANDARD MOLSCAT POTENL ROUTINE (AUG 94) CALLED FOR POTENTIAL. /POTL/ DATA ARE -- POTENTIAL IS **NOT** EXPANDED IN ANGULAR FUNCTIONS. A SUITABLE VRTP ROUTINE MUST BE SUPPLIED. THIS IS A MOCK H2O-HE POTENTIAL FOR TESTING PURPOSE YOU MUST SUPPLY AN APPROPRIATE VRTP ROUTINE *** INITIALIZATION OF VRTP *** L M A 0 0 162754.800 1 0 -29296.000 2 0 1367.000 2 2 26041.000 3 0 19531.000 3 2 -26041.000 4 0 -9756.000 4 2 8138.000 4 4 6510.000 ICNSYM INPUT OR FROM VRTP SPECIFIES AXIAL SYMMETRY, ICNSYM = 2 POTENL PROCESSING FINISHED. ENERGY IN UNITS OF EPSILON = 130.00000 CM-1 R IN UNITS OF RM = 2.90000 ANGSTROMS MXLAM = 1 NPOTL = 1 IVCHK. IV() INDEXING IS NOT REQUESTED. ======================================================================================================================== 0 IOSDRV ENTERED. SET-UP FOR INFINITE ORDER SUDDEN CALCULATION. 0 * * * NOTE. IHOMO TAKEN FROM VRTP ROUTINE = 1 0 * * * NOTE. ICNSYM TAKEN FROM VRTP ROUTINE = 2 0 * * * NOTE. * * * NOTE. USE WILL BE MADE OF 2-FOLD SYMMETRY ABOUT Z-AXIS. * * * NOTE. 0 * * * NOTE. IPHIFL (PHI INTEGRATION FLAG) = 0 0 * * * NOTE. NGL = 9 TAKEN FROM &BASIS IOSNGP(1) = 9 0 * * * NOTE. NGM SET FROM &BASIS IOSNGP(2) = 3 0 THETA INTEGRATION DONE BY 9-POINT GAUSSIAN QUADRATURE. POINTS/WEIGHTS ARE -.968160 .081274 -.836031 .180648 -.613371 .260611 -.324253 .312347 .000000 .330239 .324253 .312347 .613371 .260611 .836031 .180648 .968160 .081274 0 PHI INTEGRATION DONE BY 3-POINT GAUSS-MEHLER CHEBYSCHEV) QUADRATURE. POINTS/WEIGHTS ARE .261799 .523599 .785398 .523599 1.308997 .523599 0 ABOVE WEIGHTS MULTIPLIED BY SYMMETRY FACTOR = .40000000D+01 0 LMAX TAKEN FROM &INPUT LMAX = 6 0 MMAX TAKEN FROM &INPUT MMAX = 2 0 STORAGE ALLOCATED FOR NVC (NO. VIB. CHANNELS) = 1 NGPT (NO. GAUSS PTS.) = 27 LMAX (NO. LEGENDRE COEFFS.) = 12 MXXXXL (NO. SYMMETRIES IN POTL) = 1 NQL (NO. QLT) = 22 NIXQL (NO. INDICES IN IXQL) = 3 NEXT LOCATION = 573 0 SPHERICAL HARMONIC SYMMETRIES FOR EXPANDING S-MATRIX ARE AS FOLLOWS 0 INDX L M 1 0 0 2 1 0 3 2 0 4 2 2 5 3 0 6 3 2 7 4 0 8 4 2 9 5 0 10 5 2 11 6 0 12 6 2 0 BELOW ARE INDICES TO SYMMETRIES IN QLT 0 IN QLT LM1 L M LM2 L M CODE 1 1 0 0 1 0 0 0 2 2 1 0 2 1 0 0 3 3 2 0 3 2 0 0 4 4 2 2 3 2 0 1 5 4 2 2 3 2 0 2 6 4 2 2 4 2 2 0 7 5 3 0 5 3 0 0 8 6 3 2 5 3 0 1 9 6 3 2 5 3 0 2 10 6 3 2 6 3 2 0 11 7 4 0 7 4 0 0 12 8 4 2 7 4 0 1 13 8 4 2 7 4 0 2 14 8 4 2 8 4 2 0 15 9 5 0 9 5 0 0 16 10 5 2 9 5 0 1 17 10 5 2 9 5 0 2 18 10 5 2 10 5 2 0 19 11 6 0 11 6 0 0 20 12 6 2 11 6 0 1 21 12 6 2 11 6 0 2 22 12 6 2 12 6 2 0 0 TIME TO SET UP CALCULATION WAS .05 SECONDS. EXIT IOSDRV 0======================================================================================================================== 1 IOSCLC (MAY 92). ENERGY( 1) = 300.0000 (1/CM). 0 ***** PARTIAL WAVE = 10 FOR ENERGY( 1) = 300.0000 ***** 1 ***** ***** ***** END OF CALCULATION FOR ENERGY = 300.0000 (1/CM) ***** ***** ***** PARTIAL WAVES 10 ( 1 ) 10 0 ***** ***** ***** TIME WAS .14 SEC. 0 ***** ***** STORAGE SO FAR USED 575 OF THE 1000000 AVAILABLE WORDS. 0 FOR ORIENTATION 1 SIG( 1, 1) = 2.7605E+00 0 FOR ORIENTATION 2 SIG( 1, 1) = 1.1128E+00 0 FOR ORIENTATION 3 SIG( 1, 1) = 1.8801E-02 0 FOR ORIENTATION 4 SIG( 1, 1) = 2.8548E+00 0 FOR ORIENTATION 5 SIG( 1, 1) = 4.2205E+00 0 FOR ORIENTATION 6 SIG( 1, 1) = 2.8230E-01 0 FOR ORIENTATION 7 SIG( 1, 1) = 6.7890E-01 0 FOR ORIENTATION 8 SIG( 1, 1) = 4.5334E+00 0 FOR ORIENTATION 9 SIG( 1, 1) = 1.5066E+00 0 FOR ORIENTATION 10 SIG( 1, 1) = 1.8889E+00 0 FOR ORIENTATION 11 SIG( 1, 1) = 3.4713E+00 0 FOR ORIENTATION 12 SIG( 1, 1) = 1.8903E+00 0 FOR ORIENTATION 13 SIG( 1, 1) = 4.4264E+00 0 FOR ORIENTATION 14 SIG( 1, 1) = 1.4663E-06 0 FOR ORIENTATION 15 SIG( 1, 1) = 7.7507E-01 0 FOR ORIENTATION 16 SIG( 1, 1) = 1.0489E-01 0 FOR ORIENTATION 17 SIG( 1, 1) = 1.9176E+00 0 FOR ORIENTATION 18 SIG( 1, 1) = 1.2009E-02 0 FOR ORIENTATION 19 SIG( 1, 1) = 1.5012E-01 0 FOR ORIENTATION 20 SIG( 1, 1) = 4.8372E-01 0 FOR ORIENTATION 21 SIG( 1, 1) = 1.5995E-01 0 FOR ORIENTATION 22 SIG( 1, 1) = 4.9627E-02 0 FOR ORIENTATION 23 SIG( 1, 1) = 5.3771E-02 0 FOR ORIENTATION 24 SIG( 1, 1) = 2.7737E-01 0 FOR ORIENTATION 25 SIG( 1, 1) = 1.8464E-01 0 FOR ORIENTATION 26 SIG( 1, 1) = 1.8903E-01 0 FOR ORIENTATION 27 SIG( 1, 1) = 2.0420E-01 0 AVERAGE OVER ORIENTATIONS SIG( 1, 1) = 1.3895E+00 1 STATE-TO-STATE CROSS SECTIONS (IN ANG**2) FOR KINETIC ENERGY = 300.0000 (1/CM). 0 PROCESSED BY IOSOUT (FEB 92). 0 0 ACCUMULATED Q(L,M1,M2) ARE AS FOLLOWS QLS( 0 0 0) = -9.27341E-01 QLT( 0 0 0) = 4.62152E-01 QLT( 1 0 0) = 1.59313E-01 QLT( 2 0 0) = 4.71585E-02 REAL QLT( 2 2 0) = 9.15990E-04 IMAG QLT( 2 2 0) = -2.94655E-02 QLT( 2 2 2) = 1.84284E-02 QLT( 3 0 0) = 2.40334E-02 REAL QLT( 3 2 0) = -2.29878E-04 IMAG QLT( 3 2 0) = -4.98996E-03 QLT( 3 2 2) = 1.03824E-03 QLT( 4 0 0) = 3.49569E-02 REAL QLT( 4 2 0) = -2.23361E-02 IMAG QLT( 4 2 0) = 1.24838E-02 QLT( 4 2 2) = 1.87301E-02 QLT( 5 0 0) = 8.71275E-03 REAL QLT( 5 2 0) = 3.03670E-03 IMAG QLT( 5 2 0) = -6.03712E-03 QLT( 5 2 2) = 5.24156E-03 QLT( 6 0 0) = 2.70624E-03 REAL QLT( 6 2 0) = -8.84739E-03 IMAG QLT( 6 2 0) = 5.34251E-04 QLT( 6 2 2) = 2.90299E-02 0 INITIAL LEVEL = 1 J, TAU, PARITY = 0 1 0 1 4.6215E-01 2 1.5931E-01 3 3.9488E-02 4 0.0000E+00 5 4.4527E-02 0 INITIAL LEVEL = 2 J, TAU, PARITY = 1 2 0 1 5.3104E-02 2 4.8102E-01 3 4.4369E-02 4 2.4571E-02 5 7.2634E-02 0 INITIAL LEVEL = 3 J, TAU, PARITY = 2 1 0 1 7.8976E-03 2 2.6622E-02 3 4.8462E-01* 4 6.7534E-02 5 1.6526E-02* 0 INITIAL LEVEL = 4 J, TAU, PARITY = 2 3 1 1 0.0000E+00 2 1.4743E-02 3 6.7534E-02 4 4.7590E-01* 5 4.1134E-02 0 INITIAL LEVEL = 5 J, TAU, PARITY = 2 5 0 1 8.9055E-03 2 4.3580E-02 3 1.6526E-02* 4 4.1134E-02 5 4.7383E-01* 0 ***** NOTE. FOR CROSS SECTIONS MARKED WITH A STAR, SOME CONTRIBUTING Q(L) ARE NOT AVAILABLE. ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN, VERSION 14 (AUG 94) | | | | THIS RUN USED .29 CPU SECS AND 575 OF THE ALLOCATED 1000000 WORDS OF STORAGE | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT----