From owner-chemistry@ccl.net Sat Mar 30 09:50:01 2013 From: "Angelo Quartarolo angelo.quartarolo.:.unical.it" To: CCL Subject: CCL:G: TDDFT calculations on Ferrocene Message-Id: <-48490-130330083142-12084-mmkTrOSVPbih6JH+NosJYA~~server.ccl.net> X-Original-From: Angelo Quartarolo Content-Type: text/plain; charset=ISO-8859-1 Date: Sat, 30 Mar 2013 13:31:35 +0100 MIME-Version: 1.0 Sent to CCL by: Angelo Quartarolo [angelo.quartarolo]^[unical.it] Hi, have a look at this very recent paper: http://www.theochem.uni-duesseldorf.de/users/stefan/srdft-tddft-mcscf-jcp2013.pdf Best regards Domenico 2013/3/29 Bradley Welch bwelch5[]slu.edu : > > Sent to CCL by: "Bradley Welch" [bwelch5]|[slu.edu] > Dear All, > > I've tried doing TDDFT calculations on Ferrocene in the eclipsed state with > M06/6-311++G**. The couple non-zero oscillator strengths I get coincide with > wavelengths nowhere close to the real wavelengths. This is the spectra I am > using for reference. > > http://omlc.ogi.edu/spectra/PhotochemCAD/html/062.html > > Is Ferrocene an example of a molecule whose electronic structure makes it > difficult to calculate absorption spectra? Or is this a case of just needing > to use a better function/basis set. I am doing these calculations on Gaussian > 09 RevA.02. > > > > here is the relevant output > > > Excitation energies and oscillator strengths: > > Excited State 1: Singlet-B2 1.9154 eV 647.30 nm f=0.0000 > =0.000 > 47 -> 54 -0.40323 > 47 -> 58 -0.28999 > 48 -> 53 0.40383 > 48 -> 59 0.29022 > This state for optimization and/or second-order correction. > Total Energy, E(TD-HF/TD-KS) = -1650.43361000 > Copying the excited state density for this state as the 1-particle RhoCI > density. > > Excited State 2: Singlet-A2 1.9157 eV 647.21 nm f=0.0000 > =0.000 > 47 -> 53 0.40348 > 47 -> 59 0.28996 > 48 -> 54 0.40359 > 48 -> 58 0.29024 > > Excited State 3: Singlet-A2 2.0547 eV 603.41 nm f=0.0000 > =0.000 > 46 -> 53 0.45501 > 46 -> 59 0.33273 > 47 -> 53 0.24989 > 47 -> 59 0.17811 > 48 -> 54 -0.24933 > 48 -> 58 -0.17783 > > Excited State 4: Singlet-B2 2.0548 eV 603.38 nm f=0.0000 > =0.000 > 46 -> 54 0.45482 > 46 -> 58 0.33281 > 47 -> 54 -0.24980 > 47 -> 58 -0.17817 > 48 -> 53 -0.24956 > 48 -> 59 -0.17787 > > Excited State 4: Singlet-B2 2.0548 eV 603.38 nm f=0.0000 > =0.000 > 46 -> 54 0.45482 > 46 -> 58 0.33281 > 47 -> 54 -0.24980 > 47 -> 58 -0.17817 > 48 -> 53 -0.24956 > 48 -> 59 -0.17787 > > Excited State 5: Singlet-A2 2.6804 eV 462.56 nm f=0.0000 > =0.000 > 46 -> 53 0.35332 > 46 -> 59 0.24691 > 47 -> 53 -0.33616 > 47 -> 59 -0.22572 > 48 -> 54 0.33620 > 48 -> 58 0.22590 > > Excited State 6: Singlet-B2 2.6808 eV 462.48 nm f=0.0000 > =0.000 > 46 -> 54 0.35335 > 46 -> 58 0.24709 > 47 -> 54 0.33628 > 47 -> 58 0.22595 > 48 -> 53 0.33597 > 48 -> 59 0.22558 > > Excited State 7: Singlet-B1 3.8594 eV 321.25 nm f=0.0000 > =0.000 > 48 -> 49 0.70211 > > Excited State 8: Singlet-A1 3.8596 eV 321.23 nm f=0.0000 > =0.000 > 47 -> 49 0.70211 > > Excited State 9: Singlet-A1 4.2318 eV 292.98 nm f=0.0006 > =0.000 > 47 -> 51 0.40260 > 48 -> 50 0.57842 > > Excited State 10: Singlet-B1 4.2319 eV 292.97 nm f=0.0006 > =0.000 > 47 -> 50 0.54945 > 48 -> 51 -0.44132 > > Excited State 11: Singlet-B1 4.2350 eV 292.76 nm f=0.0000 > =0.000 > 47 -> 50 0.44167 > 48 -> 51 0.54973 > > Excited State 12: Singlet-A1 4.2351 eV 292.75 nm f=0.0000 > =0.000 > 47 -> 51 0.57869 > 48 -> 50 -0.40298 > > Excited State 13: Singlet-A1 4.2514 eV 291.63 nm f=0.0000 > =0.000 > 46 -> 49 0.70204 > > Excited State 14: Singlet-A2 4.5019 eV 275.41 nm f=0.0000 > =0.000 > 48 -> 52 0.70570 > > Excited State 15: Singlet-B2 4.5022 eV 275.39 nm f=0.0000 > =0.000 > 47 -> 52 0.70567 > > Excited State 16: Singlet-B1 4.6174 eV 268.52 nm f=0.0071 > =0.000 > 46 -> 50 0.70484 > > Excited State 17: Singlet-A1 4.6183 eV 268.47 nm f=0.0071 > =0.000 > 46 -> 51 0.70484 > > Excited State 18: Singlet-B1 4.7507 eV 260.98 nm f=0.0000 > =0.000 > 47 -> 56 0.45211 > 48 -> 55 0.50362 > > Excited State 19: Singlet-A1 4.7654 eV 260.18 nm f=0.0000 > =0.000 > 47 -> 55 0.65915 > 48 -> 56 -0.24229 > > Excited State 20: Singlet-B1 4.7668 eV 260.10 nm f=0.0003 > =0.000 > 47 -> 56 0.52024 > 48 -> 55 -0.47053 > > > My input is the following > > %nproc=4 > %mem=12GB > #P M06/6-311++G** scf=tight TD(Nstates=20) > > ferrocene uv > > 0 1 > 26 0.000000000 0.000000000 0.000000000 > 6 0.378581000 1.165151000 1.669713000 > 6 -0.991137000 0.720103000 1.669713000 > 6 -0.991137000 -0.720103000 1.669713000 > 6 0.378581000 -1.165151000 1.669713000 > 6 1.225113000 0.000000000 1.669713000 > 1 0.712432000 2.192641000 1.669713000 > 1 -1.865172000 1.355126000 1.669713000 > 1 -1.865172000 -1.355126000 1.669713000 > 1 0.712432000 -2.192641000 1.669713000 > 1 2.305479000 0.000000000 1.669713000 > 6 1.225113000 0.000000000 -1.669713000 > 6 0.378581000 -1.165151000 -1.669713000 > 6 -0.991137000 -0.720103000 -1.669713000 > 6 -0.991137000 0.720103000 -1.669713000 > 6 0.378581000 1.165151000 -1.669713000 > 1 2.305479000 0.000000000 -1.669713000 > 1 0.712432000 -2.192641000 -1.669713000 > 1 -1.865172000 -1.355126000 -1.669713000 > 1 -1.865172000 1.355126000 -1.669713000 > 1 0.712432000 2.192641000 -1.669713000> > From owner-chemistry@ccl.net Sat Mar 30 12:08:01 2013 From: "Victor Nemykin victor_nemykin**yahoo.com" To: CCL Subject: CCL:G: TDDFT calculations on Ferrocene Message-Id: <-48491-130330101510-1882-KO3/bP+yNiQfL1Ve8OahOQ]|[server.ccl.net> X-Original-From: Victor Nemykin Content-Type: multipart/alternative; boundary="969045052-2023905082-1364652902=:731" Date: Sat, 30 Mar 2013 07:15:02 -0700 (PDT) MIME-Version: 1.0 Sent to CCL by: Victor Nemykin [victor_nemykin=yahoo.com] --969045052-2023905082-1364652902=:731 Content-Type: text/plain; charset=iso-8859-1 Content-Transfer-Encoding: quoted-printable Hello Bradley:=0AIndeed, in the case of ferrocene-containing compounds, it = is better to use GGA-based exchange-correlation functionals (see, for insta= nce, =0A=0AInorg. Chem. 2007, 46, 9591-9601 and Organometallics2007, 26, 31= 38-3148). Adding solvent could also be beneficial (say PCM with DCM as a so= lvent for ferrocene). Try BP86, BPW91, or M06L. Also, unless you are really= would like to have a look into the higher energy Rydberg states, just drop= diffuse functions from the basis set. 6-311G(d) is quite sufficient for th= e most cases.=0A=0AGood Luck,=0AVictor=0A=0A=A0=0A*****=0ADr. Victor N.Nemy= kin=0A=0A=0Ae-mail: vnemykin]![d.umn.edu=0A*****=0A=0A=0A____________________= ____________=0A From: Bradley Welch bwelch5[]slu.edu =0ATo: "Nemykin, Victor " =0ASent: Fr= iday, March 29, 2013 2:21 PM=0ASubject: CCL:G: TDDFT calculations on Ferroc= ene=0A =0A=0ASent to CCL by: "Bradley=A0 Welch" [bwelch5]|[slu.edu]=0ADear = All, =0A=0AI've tried doing TDDFT calculations on Ferrocene in the eclipsed= state with =0AM06/6-311++G**. The couple non-zero oscillator strengths I g= et coincide with =0Awavelengths nowhere close to the real wavelengths. This= is the spectra I am =0Ausing for reference.=0A=0Ahttp://omlc.ogi.edu/spect= ra/PhotochemCAD/html/062.html=0A=0AIs Ferrocene an example of a molecule wh= ose electronic structure makes it =0Adifficult to calculate absorption spec= tra? Or is this a case of just needing =0Ato use a better function/basis se= t. I am doing these calculations on Gaussian =0A09 RevA.02. =0A=0A=0A=0Aher= e is the relevant output=0A=0A=0AExcitation energies and oscillator strengt= hs:=0A=0AExcited State=A0 1:=A0 =A0 =A0 Singlet-B2=A0 =A0 1.9154 eV=A0 64= 7.30 nm=A0 f=3D0.0000=A0 =0A=3D0.000=0A=A0 =A0 =A0 47 -> 54=A0 =A0 = =A0 =A0 -0.40323=0A=A0 =A0 =A0 47 -> 58=A0 =A0 =A0 =A0 -0.28999=0A=A0 =A0 = =A0 48 -> 53=A0 =A0 =A0 =A0 0.40383=0A=A0 =A0 =A0 48 -> 59=A0 =A0 =A0 =A0 = 0.29022=0AThis state for optimization and/or second-order correction.=0ATo= tal Energy, E(TD-HF/TD-KS) =3D=A0 -1650.43361000=0ACopying the excited stat= e density for this state as the 1-particle RhoCI =0Adensity.=0A=0AExcited S= tate=A0 2:=A0 =A0 =A0 Singlet-A2=A0 =A0 1.9157 eV=A0 647.21 nm=A0 f=3D0.0= 000=A0 =0A=3D0.000=0A=A0 =A0 =A0 47 -> 53=A0 =A0 =A0 =A0 0.40348=0A= =A0 =A0 =A0 47 -> 59=A0 =A0 =A0 =A0 0.28996=0A=A0 =A0 =A0 48 -> 54=A0 =A0 = =A0 =A0 0.40359=0A=A0 =A0 =A0 48 -> 58=A0 =A0 =A0 =A0 0.29024=0A=0AExcite= d State=A0 3:=A0 =A0 =A0 Singlet-A2=A0 =A0 2.0547 eV=A0 603.41 nm=A0 f=3D= 0.0000=A0 =0A=3D0.000=0A=A0 =A0 =A0 46 -> 53=A0 =A0 =A0 =A0 0.45501= =0A=A0 =A0 =A0 46 -> 59=A0 =A0 =A0 =A0 0.33273=0A=A0 =A0 =A0 47 -> 53=A0 = =A0 =A0 =A0 0.24989=0A=A0 =A0 =A0 47 -> 59=A0 =A0 =A0 =A0 0.17811=0A=A0 = =A0 =A0 48 -> 54=A0 =A0 =A0 =A0 -0.24933=0A=A0 =A0 =A0 48 -> 58=A0 =A0 =A0 = =A0 -0.17783=0A=0AExcited State=A0 4:=A0 =A0 =A0 Singlet-B2=A0 =A0 2.0548= eV=A0 603.38 nm=A0 f=3D0.0000=A0 =0A=3D0.000=0A=A0 =A0 =A0 46 -> 54= =A0 =A0 =A0 =A0 0.45482=0A=A0 =A0 =A0 46 -> 58=A0 =A0 =A0 =A0 0.33281=0A= =A0 =A0 =A0 47 -> 54=A0 =A0 =A0 =A0 -0.24980=0A=A0 =A0 =A0 47 -> 58=A0 =A0 = =A0 =A0 -0.17817=0A=A0 =A0 =A0 48 -> 53=A0 =A0 =A0 =A0 -0.24956=0A=A0 =A0 = =A0 48 -> 59=A0 =A0 =A0 =A0 -0.17787=0A=0AExcited State=A0 4:=A0 =A0 =A0 S= inglet-B2=A0 =A0 2.0548 eV=A0 603.38 nm=A0 f=3D0.0000=A0 =0A=3D0.000= =0A=A0 =A0 =A0 46 -> 54=A0 =A0 =A0 =A0 0.45482=0A=A0 =A0 =A0 46 -> 58=A0 = =A0 =A0 =A0 0.33281=0A=A0 =A0 =A0 47 -> 54=A0 =A0 =A0 =A0 -0.24980=0A=A0 = =A0 =A0 47 -> 58=A0 =A0 =A0 =A0 -0.17817=0A=A0 =A0 =A0 48 -> 53=A0 =A0 =A0 = =A0 -0.24956=0A=A0 =A0 =A0 48 -> 59=A0 =A0 =A0 =A0 -0.17787=0A=0AExcited St= ate=A0 5:=A0 =A0 =A0 Singlet-A2=A0 =A0 2.6804 eV=A0 462.56 nm=A0 f=3D0.00= 00=A0 =0A=3D0.000=0A=A0 =A0 =A0 46 -> 53=A0 =A0 =A0 =A0 0.35332=0A= =A0 =A0 =A0 46 -> 59=A0 =A0 =A0 =A0 0.24691=0A=A0 =A0 =A0 47 -> 53=A0 =A0 = =A0 =A0 -0.33616=0A=A0 =A0 =A0 47 -> 59=A0 =A0 =A0 =A0 -0.22572=0A=A0 =A0 = =A0 48 -> 54=A0 =A0 =A0 =A0 0.33620=0A=A0 =A0 =A0 48 -> 58=A0 =A0 =A0 =A0 = 0.22590=0A=0AExcited State=A0 6:=A0 =A0 =A0 Singlet-B2=A0 =A0 2.6808 eV= =A0 462.48 nm=A0 f=3D0.0000=A0 =0A=3D0.000=0A=A0 =A0 =A0 46 -> 54=A0 = =A0 =A0 =A0 0.35335=0A=A0 =A0 =A0 46 -> 58=A0 =A0 =A0 =A0 0.24709=0A=A0 = =A0 =A0 47 -> 54=A0 =A0 =A0 =A0 0.33628=0A=A0 =A0 =A0 47 -> 58=A0 =A0 =A0 = =A0 0.22595=0A=A0 =A0 =A0 48 -> 53=A0 =A0 =A0 =A0 0.33597=0A=A0 =A0 =A0 4= 8 -> 59=A0 =A0 =A0 =A0 0.22558=0A=0AExcited State=A0 7:=A0 =A0 =A0 Single= t-B1=A0 =A0 3.8594 eV=A0 321.25 nm=A0 f=3D0.0000=A0 =0A=3D0.000=0A= =A0 =A0 =A0 48 -> 49=A0 =A0 =A0 =A0 0.70211=0A=0AExcited State=A0 8:=A0 = =A0 =A0 Singlet-A1=A0 =A0 3.8596 eV=A0 321.23 nm=A0 f=3D0.0000=A0 =0A=3D0.000=0A=A0 =A0 =A0 47 -> 49=A0 =A0 =A0 =A0 0.70211=0A=0AExcited State= =A0 9:=A0 =A0 =A0 Singlet-A1=A0 =A0 4.2318 eV=A0 292.98 nm=A0 f=3D0.0006= =A0 =0A=3D0.000=0A=A0 =A0 =A0 47 -> 51=A0 =A0 =A0 =A0 0.40260=0A=A0 = =A0 =A0 48 -> 50=A0 =A0 =A0 =A0 0.57842=0A=0AExcited State=A0 10:=A0 =A0 = =A0 Singlet-B1=A0 =A0 4.2319 eV=A0 292.97 nm=A0 f=3D0.0006=A0 =0A=3D= 0.000=0A=A0 =A0 =A0 47 -> 50=A0 =A0 =A0 =A0 0.54945=0A=A0 =A0 =A0 48 -> 51= =A0 =A0 =A0 =A0 -0.44132=0A=0AExcited State=A0 11:=A0 =A0 =A0 Singlet-B1=A0= =A0 4.2350 eV=A0 292.76 nm=A0 f=3D0.0000=A0 =0A=3D0.000=0A=A0 =A0 = =A0 47 -> 50=A0 =A0 =A0 =A0 0.44167=0A=A0 =A0 =A0 48 -> 51=A0 =A0 =A0 =A0 = 0.54973=0A=0AExcited State=A0 12:=A0 =A0 =A0 Singlet-A1=A0 =A0 4.2351 eV= =A0 292.75 nm=A0 f=3D0.0000=A0 =0A=3D0.000=0A=A0 =A0 =A0 47 -> 51=A0 = =A0 =A0 =A0 0.57869=0A=A0 =A0 =A0 48 -> 50=A0 =A0 =A0 =A0 -0.40298=0A=0AEx= cited State=A0 13:=A0 =A0 =A0 Singlet-A1=A0 =A0 4.2514 eV=A0 291.63 nm=A0 = f=3D0.0000=A0 =0A=3D0.000=0A=A0 =A0 =A0 46 -> 49=A0 =A0 =A0 =A0 0.70= 204=0A=0AExcited State=A0 14:=A0 =A0 =A0 Singlet-A2=A0 =A0 4.5019 eV=A0 27= 5.41 nm=A0 f=3D0.0000=A0 =0A=3D0.000=0A=A0 =A0 =A0 48 -> 52=A0 =A0 = =A0 =A0 0.70570=0A=0AExcited State=A0 15:=A0 =A0 =A0 Singlet-B2=A0 =A0 4.= 5022 eV=A0 275.39 nm=A0 f=3D0.0000=A0 =0A=3D0.000=0A=A0 =A0 =A0 47 ->= 52=A0 =A0 =A0 =A0 0.70567=0A=0AExcited State=A0 16:=A0 =A0 =A0 Singlet-B1= =A0 =A0 4.6174 eV=A0 268.52 nm=A0 f=3D0.0071=A0 =0A=3D0.000=0A=A0 = =A0 =A0 46 -> 50=A0 =A0 =A0 =A0 0.70484=0A=0AExcited State=A0 17:=A0 =A0 = =A0 Singlet-A1=A0 =A0 4.6183 eV=A0 268.47 nm=A0 f=3D0.0071=A0 =0A=3D= 0.000=0A=A0 =A0 =A0 46 -> 51=A0 =A0 =A0 =A0 0.70484=0A=0AExcited State=A0 = 18:=A0 =A0 =A0 Singlet-B1=A0 =A0 4.7507 eV=A0 260.98 nm=A0 f=3D0.0000=A0 = =0A=3D0.000=0A=A0 =A0 =A0 47 -> 56=A0 =A0 =A0 =A0 0.45211=0A=A0 =A0 = =A0 48 -> 55=A0 =A0 =A0 =A0 0.50362=0A=0AExcited State=A0 19:=A0 =A0 =A0 S= inglet-A1=A0 =A0 4.7654 eV=A0 260.18 nm=A0 f=3D0.0000=A0 =0A=3D0.000= =0A=A0 =A0 =A0 47 -> 55=A0 =A0 =A0 =A0 0.65915=0A=A0 =A0 =A0 48 -> 56=A0 = =A0 =A0 =A0 -0.24229=0A=0AExcited State=A0 20:=A0 =A0 =A0 Singlet-B1=A0 =A0= 4.7668 eV=A0 260.10 nm=A0 f=3D0.0003=A0 =0A=3D0.000=0A=A0 =A0 =A0 4= 7 -> 56=A0 =A0 =A0 =A0 0.52024=0A=A0 =A0 =A0 48 -> 55=A0 =A0 =A0 =A0 -0.47= 053=0A=0A=0AMy input is the following =0A=0A%nproc=3D4=0A%mem=3D12GB=0A#P M= 06/6-311++G** scf=3Dtight TD(Nstates=3D20)=0A=0Aferrocene uv=0A=0A0 1=0A26= =A0 =A0 =A0 0.000000000=A0 =A0 =A0 0.000000000=A0 =A0 =A0 0.000000000=0A6= =A0 =A0 =A0 =A0 0.378581000=A0 =A0 =A0 1.165151000=A0 =A0 =A0 1.669713000= =0A6=A0 =A0 =A0 -0.991137000=A0 =A0 =A0 0.720103000=A0 =A0 =A0 1.669713000= =0A6=A0 =A0 =A0 -0.991137000=A0 =A0 -0.720103000=A0 =A0 =A0 1.669713000= =0A6=A0 =A0 =A0 =A0 0.378581000=A0 =A0 -1.165151000=A0 =A0 =A0 1.669713000= =0A6=A0 =A0 =A0 =A0 1.225113000=A0 =A0 =A0 0.000000000=A0 =A0 =A0 1.6697130= 00=0A1=A0 =A0 =A0 =A0 0.712432000=A0 =A0 =A0 2.192641000=A0 =A0 =A0 1.66971= 3000=0A1=A0 =A0 =A0 -1.865172000=A0 =A0 =A0 1.355126000=A0 =A0 =A0 1.66971= 3000=0A1=A0 =A0 =A0 -1.865172000=A0 =A0 -1.355126000=A0 =A0 =A0 1.6697130= 00=0A1=A0 =A0 =A0 =A0 0.712432000=A0 =A0 -2.192641000=A0 =A0 =A0 1.6697130= 00=0A1=A0 =A0 =A0 =A0 2.305479000=A0 =A0 =A0 0.000000000=A0 =A0 =A0 1.66971= 3000=0A6=A0 =A0 =A0 =A0 1.225113000=A0 =A0 =A0 0.000000000=A0 =A0 -1.66971= 3000=0A6=A0 =A0 =A0 =A0 0.378581000=A0 =A0 -1.165151000=A0 =A0 -1.6697130= 00=0A6=A0 =A0 =A0 -0.991137000=A0 =A0 -0.720103000=A0 =A0 -1.669713000= =0A6=A0 =A0 =A0 -0.991137000=A0 =A0 =A0 0.720103000=A0 =A0 -1.669713000= =0A6=A0 =A0 =A0 =A0 0.378581000=A0 =A0 =A0 1.165151000=A0 =A0 -1.669713000= =0A1=A0 =A0 =A0 =A0 2.305479000=A0 =A0 =A0 0.000000000=A0 =A0 -1.669713000= =0A1=A0 =A0 =A0 =A0 0.712432000=A0 =A0 -2.192641000=A0 =A0 -1.669713000= =0A1=A0 =A0 =A0 -1.865172000=A0 =A0 -1.355126000=A0 =A0 -1.669713000=0A1= =A0 =A0 =A0 -1.865172000=A0 =A0 =A0 1.355126000=A0 =A0 -1.669713000=0A1= =A0 =A0 =A0 =A0 0.712432000=A0 =A0 =A0 2.192641000=A0 =A0 -1.669713000=0A= =0A=0A=0A-=3D This is automatically added to each message by the mailing sc= ript =3D-=0ATo recover the email address of the author of the message, plea= se change=0Athe strange characters on the top line to the ]![ sign. You can a= lso=0A=0A=0AE-mail to = subscribers: CHEMISTRY]![ccl.net or use:=0A=A0 =A0 =A0 http://www.ccl.net/cgi= -bin/ccl/send_ccl_message=0A=0AE-mail to administrators: CHEMISTRY-REQUEST]![= ccl.net or use=0A=A0 =A0 =A0 http://www.ccl.net/cgi-bin/ccl/send_ccl_messag= e=0A=0A=0A=A0 =A0 =A0 http://www.ccl.net/chemistry/s= ub_unsub.shtml=0A=0A= =0A=0A=0AConferences: http://server.ccl.net/ch= emistry/announcements/conferences/=0A=0ASearch Messages: http://www.ccl.net= /chemistry/searchccl/index.shtml=0A=0AIf your mail bounces from CCL with 5.= 7.1 error, check:=0A=A0 =A0 =A0=0A=0ARTFI: = http://www.ccl.net/chemistry/aboutccl/instructions/ --969045052-2023905082-1364652902=:731 Content-Type: text/html; charset=iso-8859-1 Content-Transfer-Encoding: quoted-printable
Hello Brad= ley:
Indeed, in the case of ferrocene-containing com= pounds, it is better to use GGA-based exchange-correlation functionals (see= , for instance,
Inorg. Chem. 2007, 46= , 9591-9601 and Organometallics 2007, 26= , 3138-3148). Adding solvent could also be beneficial (say PCM with DCM= as a solvent for ferrocene). Try BP86, BPW91, or M06L. Also, unless you ar= e really would like to have a look into the higher energy Rydberg states, j= ust drop diffuse functions from the basis set. 6-311G(d) is quite sufficien= t for the most cases.
Good Luck,
<= div style=3D"color: rgb(0, 0, 0); font-size: 10pt; font-family: "Times= New Roman","serif"; background-color: transparent; font-sty= le: italic;">Victor

 
*****
Dr. Victor N.Nemykin

e-mail: vnemykin]![d.= umn.edu
*****

From: Bradley Welch bwelch5[]slu.edu <owner-chemistry]![ccl.n= et>
To: "Nemykin, V= ictor " <victor_nemykin]![yahoo.com>
Sent: Friday, March 29, 2013 2:21 PM
Subject: CCL:G: TDDFT calculatio= ns on Ferrocene

=0A
Sent to CCL by: "Bradley = ; Welch" [bwelch5]|[slu.edu]
Dear All,

I've tried doing TDDFT calculations on Ferrocene i= n the eclipsed state with
M06/6-311++G**. The couple non-zero oscillato= r strengths I get coincide with
wavelengths nowhere close to the real w= avelengths. This is the spectra I am
using for reference.

http:/= /omlc.ogi.edu/spectra/PhotochemCAD/html/062.html

Is Ferrocene an exa= mple of a molecule whose electronic structure makes it
difficult to cal= culate absorption spectra? Or is this a case of just needing
to use a b= etter function/basis set. I am doing these calculations on Gaussian
09 = RevA.02.



here is the relevant output


Excitation = energies and oscillator strengths:

Excited State  1:  &n= bsp;   Singlet-B2    1.9154 eV  647.30 nm  f=3D0.= 0000 
<S**2>=3D0.000
      47 -> 54    =     -0.40323
      47 -> 58    &nb= sp;   -0.28999
      48 -> 53     =   0.40383
      48 -> 59      &n= bsp; 0.29022
This state for optimization and/or second-order correctio= n.
Total Energy, E(TD-HF/TD-KS) =3D  -1650.43361000
Copying th= e excited state density for this state as the 1-particle RhoCI
density.=

Excited State  2:      Singlet-A2   = ; 1.9157 eV  647.21 nm  f=3D0.0000 
<S**2>=3D0.00= 0
      47 -> 53        0.40348      47 -> 59        0.28996
&= nbsp;     48 -> 54        0.40359
&nbs= p;     48 -> 58        0.29024

Excited State  3:      Singlet-A2    2.054= 7 eV  603.41 nm  f=3D0.0000 
<S**2>=3D0.000
&nb= sp;     46 -> 53        0.45501
 =     46 -> 59        0.33273
  &n= bsp;   47 -> 53        0.24989
   = ;   47 -> 59        0.17811
    &= nbsp; 48 -> 54        -0.24933
    &nbs= p; 48 -> 58        -0.17783

Excited State&nb= sp; 4:      Singlet-B2    2.0548 eV  603.38= nm  f=3D0.0000 
<S**2>=3D0.000
     = 46 -> 54        0.45482
      46= -> 58        0.33281
      47 -&= gt; 54        -0.24980
      47 -> 58        -0.17817
      48 -> 53=         -0.24956
      48 -> 59&nb= sp;       -0.17787

Excited State  4:  &nb= sp;   Singlet-B2    2.0548 eV  603.38 nm  f=3D0.0= 000 
<S**2>=3D0.000
      46 -> 54 = ;       0.45482
      46 -> 58  &= nbsp;     0.33281
      47 -> 54  &nbs= p;     -0.24980
      47 -> 58    =     -0.17817
      48 -> 53    &nb= sp;   -0.24956
      48 -> 59     =   -0.17787

Excited State  5:      Single= t-A2    2.6804 eV  462.56 nm  f=3D0.0000 
<= ;S**2>=3D0.000
      46 -> 53        0.35332
      46 -> 59      &n= bsp; 0.24691
      47 -> 53       = ; -0.33616
      47 -> 59        -= 0.22572
      48 -> 54        0.3= 3620
      48 -> 58        0.2259= 0

Excited State  6:      Singlet-B2  &nbs= p; 2.6808 eV  462.48 nm  f=3D0.0000 
<S**2>=3D0.0= 00
      46 -> 54        0.35335<= br>      46 -> 58        0.24709
=       47 -> 54        0.33628
&nb= sp;     47 -> 58        0.22595
 =     48 -> 53        0.33597
  &n= bsp;   48 -> 59        0.22558

Excited State  7:      Singlet-B1    3.859= 4 eV  321.25 nm  f=3D0.0000 
<S**2>=3D0.000
&nb= sp;     48 -> 49        0.70211

E= xcited State  8:      Singlet-A1    3.8596 = eV  321.23 nm  f=3D0.0000 
<S**2>=3D0.000
 = ;     47 -> 49        0.70211

Exc= ited State  9:      Singlet-A1    4.2318 eV=   292.98 nm  f=3D0.0006 
<S**2>=3D0.000
  =     47 -> 51        0.40260
  &nb= sp;   48 -> 50        0.57842

Excited S= tate  10:      Singlet-B1    4.2319 eV = 292.97 nm  f=3D0.0006 
<S**2>=3D0.000
   =   47 -> 50        0.54945
    &n= bsp; 48 -> 51        -0.44132

Excited State  1= 1:      Singlet-B1    4.2350 eV  292.76 nm&n= bsp; f=3D0.0000 
<S**2>=3D0.000
      47 -= > 50        0.44167
      48 ->= ; 51        0.54973

Excited State  12:&nb= sp;     Singlet-A1    4.2351 eV  292.75 nm  = f=3D0.0000 
<S**2>=3D0.000
      47 -> = 51        0.57869
      48 -> 50&= nbsp;       -0.40298

Excited State  13:  &= nbsp;   Singlet-A1    4.2514 eV  291.63 nm  f=3D0= .0000 
<S**2>=3D0.000
      46 -> 49&nb= sp;       0.70204

Excited State  14:  &nb= sp;   Singlet-A2    4.5019 eV  275.41 nm  f=3D0.0000 
<S**2>=3D0.000
      48 ->= 52        0.70570

Excited State  15:&nbs= p;     Singlet-B2    4.5022 eV  275.39 nm  f= =3D0.0000 
<S**2>=3D0.000
      47 -> 5= 2        0.70567

Excited State  16: =     Singlet-B1    4.6174 eV  268.52 nm  f= =3D0.0071 
<S**2>=3D0.000
      46 -> 5= 0        0.70484

Excited State  17: =     Singlet-A1    4.6183 eV  268.47 nm  f= =3D0.0071 
<S**2>=3D0.000
      46 -> 5= 1        0.70484

Excited State  18: =     Singlet-B1    4.7507 eV  260.98 nm  f= =3D0.0000 
<S**2>=3D0.000
      47 -> 5= 6        0.45211
      48 -> 55    &n= bsp;   0.50362

Excited State  19:      Si= nglet-A1    4.7654 eV  260.18 nm  f=3D0.0000  <S**2>=3D0.000
      47 -> 55    &nbs= p;   0.65915
      48 -> 56      =   -0.24229

Excited State  20:      Singlet= -B1    4.7668 eV  260.10 nm  f=3D0.0003 
<= S**2>=3D0.000
      47 -> 56      &n= bsp; 0.52024
      48 -> 55       = ; -0.47053


My input is the following

%nproc=3D4
%mem= =3D12GB
#P M06/6-311++G** scf=3Dtight TD(Nstates=3D20)

ferrocene = uv

0 1
26      0.000000000      0.= 000000000      0.000000000
6        0.378581000      1.165151000      1.66971300= 0
6      -0.991137000      0.720103000&nb= sp;     1.669713000
6      -0.991137000  =   -0.720103000      1.669713000
6    &nbs= p;   0.378581000    -1.165151000      1.6697= 13000
6        1.225113000      0.000= 000000      1.669713000
1        0.71= 2432000      2.192641000      1.669713000
= 1      -1.865172000      1.355126000  &= nbsp;   1.669713000
1      -1.865172000   = ; -1.355126000      1.669713000
1      &n= bsp; 0.712432000    -2.192641000      1.669713000=
1        2.305479000      0.000000000      1.669713000
6       = ; 1.225113000      0.000000000    -1.6697130006        0.378581000    -1.165151000  =   -1.669713000
6      -0.991137000    -= 0.720103000    -1.669713000
6      -0.9911370= 00      0.720103000    -1.669713000
6  &n= bsp;     0.378581000      1.165151000   = -1.669713000
1        2.305479000    &nb= sp; 0.000000000    -1.669713000
1        = 0.712432000    -2.192641000    -1.669713000
1 = ;     -1.865172000    -1.355126000    -1.6= 69713000
1      -1.865172000      1.35512= 6000    -1.669713000
1        0.712432000      2.192641000    -1.669713000
=


-=3D This is automatically added to each message by the mailing= script =3D-
To recover the email address of the author of the message, = please change
the strange characters on the top line to the ]![ sign. You = can also
E-= mail to subscribers:
CHEMISTRY]![ccl.net or use:
      <= a href=3D"http://www.ccl.net/cgi-bin/ccl/send_ccl_message" target=3D"_blank= ">http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to admi= nistrators: CHEMISTRY-REQUEST]![ccl.net or use
  &= nbsp;   http://www.ccl.net/cgi-bin/ccl/send_ccl_message
<= br
      http://www.ccl.net/chemi= stry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Jo= b: http://www.ccl.net= /jobs
Conferences: http://server.ccl.net/chemistry/an= nouncements/conferences/

Search Messages: http://www.ccl.n= et/chemistry/searchccl/index.shtml

If your mail bounces from CCL= with 5.7.1 error, check:
      http://www.ccl.net/spammers.txt
RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/



--969045052-2023905082-1364652902=:731-- From owner-chemistry@ccl.net Sat Mar 30 12:43:00 2013 From: "Ramesh Kumar Chitumalla rameshchitumalla..gmail.com" To: CCL Subject: CCL: MO's in Solvent Message-Id: <-48492-130330120638-27623-/SMjwJ4CcEoJPte3bWUX3Q[A]server.ccl.net> X-Original-From: "Ramesh Kumar Chitumalla" Date: Sat, 30 Mar 2013 12:06:37 -0400 Sent to CCL by: "Ramesh Kumar Chitumalla" [rameshchitumalla[#]gmail.com] Dears CCL'Rs I would like to compare the behavior of a positively charged Ru(II) Dye in Vacuum and in solvent (DMF) (using G09 package) and for the same, DFT and TDDFT calculations have been carried out and I generated the MOs in Vacuum and in solvent (DMF). Kindly let me know does the generation of MOs in solvent meaningful ? Any help is greatly appreciated. Thank you. From owner-chemistry@ccl.net Sat Mar 30 18:12:00 2013 From: "Tijesunimi Odebode tijesunimi|*|yahoo.com" To: CCL Subject: CCL: Spartan Message-Id: <-48493-130330180306-19224-KFVCTcC3yMw1iONrmBIlNw^^server.ccl.net> X-Original-From: Tijesunimi Odebode Content-Type: multipart/alternative; boundary="2164780-1234540122-1364680979=:8728" Date: Sat, 30 Mar 2013 15:02:59 -0700 (PDT) MIME-Version: 1.0 Sent to CCL by: Tijesunimi Odebode [tijesunimi _ yahoo.com] --2164780-1234540122-1364680979=:8728 Content-Type: text/plain; charset=iso-8859-1 Content-Transfer-Encoding: quoted-printable Thanks a lot for the suggestion. I will definitely do that.=0A=0ATJ=0A=0A= =0A________________________________=0A From: Kimberley Cousins kcousins:+:c= susb.edu =0ATo: "Odebode, Tijesunimi John = " =0ASent: Friday, March 29, 2013 2:05 PM=0ASubject:= CCL: Spartan=0A =0A=0ASent to CCL by: Kimberley Cousins [kcousins*csusb.ed= u]=0AHi Tijesunimi (John)=0A=0AThere is an excellent tutorial book that com= es with Spartan. I would suggest using tutorials in the books as models. Fo= r example, my older tutorial book has a lesson on "Stereospecific Diels-Ald= er Reactions". If you use this as a model, you can likely complete the reac= tions you are interested in.=0A=0AKimberley R. Cousins=0AProfessor of Chemi= stry=0ACalifornia State University, San Bernardino=0Akcousins(a)csusb.edu= =0A=0A----- Original Message -----=0A> From: "Tijesunimi John Odebode tijes= unimi=3Dyahoo.com" =0ADate: Friday, March 29, 20= 13 10:57 am=0ASubject: CCL: Spartan=0ATo: "Cousins, Kimberley " =0A=0A> =0A> Sent to CCL by: "Tijesunimi John Odebode" [tijesuni= mi-x-yahoo.com]=0A> Hello,=0A> =0A> Is anyone familiar with the Spartan'10 = program. I am a first year =0A> graduate student in synthetic organic =0A> = chemistry. I am investigating some intramolecular diels-alder =0A> reaction= s to evaluate the effects of =0A> electron withdrawing groups on the facili= ty of=A0 the reactions. Is =0A> anyone familiar with how to predict =0A> re= actons' facility using Spartan.=A0 I am a novice in this area so =0A> any s= uggestions, papers to read, and =0A> more would be appreciated. Thanks=0A> = =0A> =0A> =0A> -=3D This is automatically added to each message by the mail= ing =0A> script =3D-=0A> To recover the email address of the author of the = message, please =0A> changethe strange characters on the top line to the (a= ) sign. You can =0A> also> Conferences: =0A> http://server.ccl.net/chemistr= y/announcements/conferences/> =0A> =0A>=0A=0A=0A=0A-=3D This is automatical= ly added to each message by the mailing script =3D-=0ATo recover the email = address of the author of the message, please change=0Athe strange character= s on the top line to the ]*[ sign. You can also=0Alook up the X-Original-From= : line in the mail header.=0A=0AE-mail to subscribers: CHEMISTRY]*[ccl.net or= use:=0A=A0 =A0 =A0=0A=0AE-= mail to administrators: CHEMISTRY-REQUEST]*[ccl.net or use=0A=A0 =A0 =A0 http= ://www.ccl.net/cgi-bin/ccl/send_ccl_message=0A=0A=0A= =A0 =A0 =A0=0A=0ABefore postin= g, check wait time at: http://www.ccl.net=0A=0AJob: http://www.ccl.net/jobs= =0A= =0A=0A= =0A=0A=0A=A0 =A0 =A0 ==0A=0ARTFI: http://www.ccl.net/chemistry/abo= utccl/instructions/ --2164780-1234540122-1364680979=:8728 Content-Type: text/html; charset=iso-8859-1 Content-Transfer-Encoding: quoted-printable
Thanks a lot for th= e suggestion. I will definitely do that.

TJ


From: Kimberley Cousins kcousins:+:csusb.edu &l= t;owner-chemistry]*[ccl.net>
To:= "Odebode, Tijesunimi John " <tijesunimi]*[yahoo.com>
<= span style=3D"font-weight: bold;">Sent: Friday, March 29, 2013 2= :05 PM
Subject: CCL: S= partan

=0A
Sent to CCL by: Kimberley Cousins [kco= usins*csusb.edu]
Hi Tijesunimi (John)

There is an excellent tutor= ial book that comes with Spartan. I would suggest using tutorials in the bo= oks as models. For example, my older tutorial book has a lesson on "Stereos= pecific Diels-Alder Reactions". If you use this as a model, you can likely = complete the reactions you are interested in.

Kimberley R. CousinsProfessor of Chemistry
California State University, San Bernardino
= kcousins(a)csusb.edu
----- Original Message -----
> From: "Tijesunimi John Odebode ti= jesunimi=3Dyahoo.com" <owner-chemistry(a)ccl.net>
Date: Friday, March 29, 2013 10:57 am
= Subject: CCL: Spartan
To: "Cousins, Kimberley " <kcousins(a)csusb.edu= >

>
> Sent to CCL by: "Tijesunimi John Odebode" [tijesunimi-x-yahoo.com]
>= ; Hello,
>
> Is anyone familiar with the Spartan'10 program. I= am a first year
> graduate student in synthetic organic
> ch= emistry. I am investigating some intramolecular diels-alder
> reacti= ons to evaluate the effects of
> electron withdrawing groups on the = facility of  the reactions. Is
> anyone familiar with how to pr= edict
> reactons' facility using Spartan.  I am a novice in thi= s area so
> any suggestions, papers to read, and
> more would= be appreciated. Thanks
>
>
>
> -=3D This is aut= omatically added to each message by the mailing
> script =3D-
>= ; To recover the email address of the author of the message, please
>= ; changethe strange characters on the top line to the (a) sign. You can > also> Conferences:
> http://server.ccl.net/chemistry/announcements/conferences/>
> >



-=3D This is automatically added to each message by t= he mailing script =3D-
To recover the email address of the author of the= message, please change
the strange characters on the top line to the ]*[ = sign. You can also
E-mail to subscribers: CHEMISTRY]*[ccl.net or use:
   = ;  

E-mail to a= dministrators: CHEMISTRY-REQUEST]*[ccl.net or use
 = ;     http://www.ccl.net/cgi-bin/ccl/send_ccl_message
<= br
     

Before posting, check = wait time at: http://www.ccl.net
Co= nferences: http://server.ccl.net/chemistry/announcements/conf= erences/

Search Messages: http://www.ccl.net/chemistry/searchccl= /index.shtml
     

RTFI: http:/= /www.ccl.net/chemistry/aboutccl/instructions/




--2164780-1234540122-1364680979=:8728--