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Introduction

Protonation reactions, i.e., A + H+ → AH+, are among the most impor-

tant in chemistry and biology. Protonation/deprotonation is the first step

in many fundamental chemical rearrangements and in most enzymatic reac-

tions. Two quantities are used to characterize the ability of a molecule in the

gas phase to accept a proton. The gas phase basicity is the negative of the

free energy change associated with the reaction. The more frequently used

index, the proton affinity, is the negative of the enthalpy change at standard

conditions. Experimental determination of these parameters is not easy (for

an excellent review on this topic see Dixon and Lias1), and with the phe-

nomenal growth in computer power in recent years, much attention has been

given to the possibility of calculating these parameters by quantum methods.

Ab initio approaches are very successful in providing reliable values of proton

affinities and gas phase basicities for small molecules even at lower levels of

theory2. However, due to computational expense, application of ab initio

methods to the estimation of proton affinities is still impractical for larger

molecules. Semiempirical methods such as AM1, MNDO and PM3, are not

consistently reliable in calculations of proton affinities as shown by Ozment
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and Schmiedekamp3.

The recent progress in the Density Functional Theory (DFT) approaches

(for review see refs 4-6) make this method another candidate for reliable cal-

culation of proton affinities, however, the performance of the method in this

field is still mostly untested. This prompted us to analyze its performance

on a few representative molecules spanning a wide range of proton affinity

values.

DFT methods are computationally less demanding than correlated ab ini-

tio approaches and formally scale with the size of the molecule as N 3 or N4,

depending on implementation. For the the simplest Hartree-Fock ab initio

approach the scaling is N 4. Moreover, the advantage of DFT methods is that

they should in principle include electron correlation energy via the correla-

tion/exchange potential, while the Hartree-Fock approach by definition does

not include this component of energy. The simplest of the routinely-used ab

initio correlated approaches, based on the second order many body perturba-

tion theory, MBPT(2) (frequently called second order Møller-Plesset theory –

MP2), recovers only a portion of the correlation energy and scales as n×N 4 (n

is the number of occupied molecular orbitals). The major weakness of DFT

approaches is that the exact mathematical form of the exchange-correlation
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potential is not known. For that reason approximations are used. The most

popular is the Local Spin Density (LSD) approximation, which simply as-

sumes that the exchange-correlation potential dependence upon charge den-

sity is represented by the functional form found for the homogenous electron

gas. This approximation works well in many cases; however, it suffers from

severly underestimating electron exchange29 and overestimating the correla-

tion energy30. Appropriate corrections to the local density approximation

are therefore sought, and several of such schemes already exist42,43.

Computational Methods

Proton affinity P (A) is defined as the negative of the molar enthalpy change

at 298.15 K (−∆HRn) for the reaction A + H+ → AH+, or in the case of

anions, A− + H+ → AH. To calculate these values from theory for gas phase

reactions we may, in most cases, obtain adequate results assuming ideal gas

behaviour: ∆HRn = ∆ERn−RT . Assuming that there is only one conformer

present, the energy E(T ) of a mole of gas consisting of nonlinear polyatomic
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molecules can be approximated as33:

E(T ) =
3

2
RT

︸ ︷︷ ︸

Etrans

+
3

2
RT

︸ ︷︷ ︸

Erot

+ ZPE + E ′vib(T )
︸ ︷︷ ︸

Evib

+Eelec (1)

ZPE =
3n−6∑

i=1

Nhνi

2
(2)

E ′vib(T ) =
3n−6∑

i=1

Nhνi

eNhνi/RT − 1
(3)

where n denotes the number of atoms in the molecule, ZPE is the zero point

energy, E ′vib(T ) represents the temperature dependent portion of vibrational

energy, νi are the calculated vibrational frequencies and Eelec is the electronic

energy7. The change in the energy occuring during protonation of 1 mole of

gas at 298.15◦K, ∆ERn = EAH+(298.15◦K)−EA(298.15◦K)−EH+(298.15◦K),

will therefore consist of the following components:

∆Erot
Rn – the change in rotational energy upon conversion of the reactants to

the product. Since a proton does not possess rotational kinetic energy,

this term is nonzero only if the protonated molecule has a different

fundamental shape than the parent one (e.g., when A is linear and

AH+ is nonlinear). In our case, all parent and protonated molecules
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are nonlinear, hence, ∆Erot
Rn ≡ 0.

∆Etrans
Rn – the change in energy associated with translational degrees of free-

dom. Since the proton on the left hand side of the equation brings 3
2
RT ,

the net ∆Etrans
Rn = −3

2
RT ; i.e., for 298.15 K ∆Etrans

Rn ≈ 0.88873249

kcal/mol.

∆Evib
Rn – the change in energy associated with internal vibrations of reactants

and products. Only the change in the zero point energy, ∆ZPE is

significant. The ∆E ′vib is usually much less then 1 kcal/mol at room

temperatures (i.e., much smaller than the experimental error) and is

included here only for completeness.

∆Eelec
Rn – the change in the electronic energy upon reaction. In our case it

is the difference between ground state energies (electronic + nuclear)

taken from quantum calculations with full geometry optimization for

the protonated and parent molecules. The ground state energy of a

proton is zero in this formulation.
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Combining the above, the following expression for proton affinity was

used in actual computations:

P (A) = −∆Eelec
Rn − ∆ZPE − ∆E ′vib +

5

2
RT (4)

The values of Eelec and the vibrational frequences νi were obtained from quan-

tum calculations. Programs Gaussian908 and ACES29 were used for tradi-

tional ab initio calculations. The original double-zeta basis set of Dunning/Huzinaga10

(9s,6p/4s) −→ (6111,411/31) was augmented with polarization functions: d-

type on C, N, O with exponents equal to: 0.8, 0.8, and 0.9 respectively, and

p-type with an exponent equal to 1.0 for H. Two sets of ab initio calcula-

tions were performed. DH6D set used cartesian gaussians (i.e., six d-type

functions) and the DH5D11 set used five d-type functions with the angular

part represented by spherical harmonics. These DZP basis sets had similiar

characteristics to the basis sets we used in our DFT calculations. The RHF

and MP2 calculations were also performed for formic acid and its anion with

a DH6D basis set augmented with diffuse s-type and p-type functions (with

exponent 0.084512) on oxygen atoms. It is well known that adding diffuse

functions on nonhydrogen atoms dramatically improves results for proton
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affinities13 though it is less important for molecular geometry. This basis set

is referred to later as DH6D(+).

The ab initio results were compared with those obtained from DFT cal-

culations performed with the programs: DGauss14, DMol15 and an academic

version of deMon16. The DGauss and deMon programs use the LSD potential

developed by Vosco et al.17 while DMol incorporates the Barth and Hedin

LSD potential18.

Basis sets of double-zeta quality with polarization functions were used

in all DFT programs. In DMol, the DNP (Double Numerical with Polar-

ization) basis set included with the program was selected. The basis sets

in this program are given numerically as cubic spline functions. The 300

radial points spaning a range from nucleus to an outer distance of 10 bohrs

is a default. The angular portion of each basis function corresponds to the

appropriate spherical harmonic. The DGauss and deMon basis functions are

analogous to those widely used in traditional ab initio calculations, i.e., they

are represented analytically by a combination of primitive gaussian functions;

however, they have been reoptimized for the DFT calculations20. For DGauss

and deMon DZVP atomic basis set and A2 auxiliary fitting set was used for

1st row atoms and DZVPP/A1 set for hydrogens. The contraction pattern
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for the atomic basis set was (9s,5p,1d/5s,1p) −→ (621,41,1/41,1). In other

words, for 1st row atoms there were three s-type basis functions combining

six, two, and one gaussian primitives, respectively; two sets of p-type basis

functions containing four and one primitives, and a single primitive for each

of the six d-type polarization functions19,20. For hydrogens two s-type func-

tions combining four and one gaussian primitives, and p-type polarization

functions consisting of one gaussian were used as a basis set.

Beside atomic basis set, in DGauss and deMon, auxiliary sets of functions

are used to fit charge density and exchange-correlation potential20. For each

atom there is one set for fitting density and another set for fitting exchange-

correlation potential. The sets consist of uncontracted s-type gaussians and

a few groups of s, p, and d-type cartesian gaussians sharing the same expo-

nent. The composition of these sets is denoted as (A,B;C,D), where A,B pair

specifies that A s-type gaussians, and B groups of spd gaussians were used for

fitting density, and C s-type gaussians and D groups of spd gaussians were

used to fit exchange-correlation potential. The A2 auxiliary set was denoted

(4,4;4,4), while the smaller A1 set used for hydrogens was (3,1;3,1).

Starting geometries for molecules were obtained from model building with

Sybyl21 using previous computational results22,23 and experimental data24−26.
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Geometries of protonated molecules were obtained by placing a proton at

position of the lone electron pair of the accepting atom. The X–H bond

lengths from the corresponding unprotonated molecules were used for these

new bonds as starting values. These geometries were then fully optimized

within given method. It was absolutely necessary since these final geometries

were used for normal modes and vibrational frequency calculations. Atom

numbering used throughout this paper is shown in Figure 1 which was pro-

duced with the MindTool software27.

Figure 1

Ab initio geometry optimizations were performed in DIRECT SCF mode

with Gaussian90, and the resulting geometries were used with ACES2 for

vibrational frequency and normal mode calculations. ACES2 computes nor-

mal modes and frequencies from the analytical Hessian for RHF and MP2

calculations. We also performed geometry optimizations at the MP2 level

(full core) with Gaussian90 in an analogous manner, followed by frequency

calculations with ACES2. In the MP2 case we used the RHF-optimized

geometries as starting data.
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The DFT calculations with both DGauss and DMol were carried out with

full geometry optimization at the Local Spin Density (LSD) level. Geometry

optimizations with nonlocal gradient corrections were performed with deMon.

Geometry optimization was followed by frequency calculations. For all DFT

codes the Hessian needed for frequency and normal modes evaluation was

calculated from analytical energy gradients by finite differences with a step

of 0.01 bohr.

Integration grid in DGauss and deMon was of similar quality (MEDIUM

and FINE respectively). In DMol the FINE integration grid density was used

and the the maximum angular momentum number (LMAX) of the multipolar

functions used to analitically fit electron density and exchange-correlation

potential was 2 for hydrogens and 3 for other atoms.

Nonlocal density gradient corrections to the LSD energies were not avail-

able in this version of DMol. The version of DGauss used by us provided for

single-point nonlocal gradient corrections to LSD energies, while the deMon

program offered gradients of nonlocal gradient corrections, i.e., provided for

geometry optimization at this level. Based on our previous experience28,

we chose the Becke29 functional for the exchange and Perdew30 functional

for the correlation potential, which we label Becke-Perdew corrections. The
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Becke-Perdew corrections were shown to improve results compared to LSD

approximation31. Since gradients of gradient-corrected energies could not be

calculated with this version of DGauss, single-point corrected energies were

calculated for the LSD-optimized geometries and vibrational contributions

to proton affinities were assumed to be the same as for the LSD. For deMon,

the fully-consistent LSD and NLSD results are reported.

Results and Discussion

Geometries

Structural parameters obtained by different methods are compared in Tables

I–IV. Since geometries resulting from DH6D and DH5D basis sets are prac-

tically identical, only results of RHF and MP2 calculations for DH6D set are

reported.

It is well known that bond lengths calculated by the Hartree-Fock method

are usually too short compared to experimental values, while the correspond-

ing MP2 values2 are much closer to reality. It was also supported by these

calculations and clearly expressed for the polarized C–O and O–H bonds.
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This effect was smaller for C–N and N–H bonds and quite small for C–C

and C–H bonds. Bond lengths from DFT bracket ab initio values on both

sides. Bonds involving hydrogen (C–H, N–H or O–H) which resulted from

LSD calculations are the longest of all, and the effect is most visible for the

O–H bonds and the smallest for the C–H bonds. The situation is opposite for

bonds between the carbon atom and another 1st row element. These bonds

calculated with LSD are the shortest of all methods and the magnitude of

this effect follows bond polarity.

Becke-Perdew corrections substantially improve bond lengths. The H–X

bonds are now shorter than for the case of uncorrected LSD. The C–X bonds

with Becke-Perdew corrections are longer than their LSD counterparts. This

brings bond lengths calculated with Becke-Perdew corrections to a much

closer agreement with experimental and MP2 values.

Valence angles usually follow the known trend in which the angle between

shorter bonds tends to be larger, while angle between overestimated bonds

is frequently smaller than it should be. This trend is evident if one compares

HF and MP2 results. It is also pronounced for H–X–Y angles, which are

usually too small for LSD calculations due to the underestimation of X–Y

bond length.
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Generally, the structural parameters calculated by different methods are

similar. Larger discrepancies are visible for torsional angles in ethanol and

protonated ethanol. It is not surprising, however, since the potential energy

surface for torsional angles pivoted on the C–O bond of ethanol is very flat,

and it is still being debated if the minimum energy of ethanol corresponds

to a gauche or trans conformation.

Proton Affinities

Total energies calculated by different quantum approaches are listed in Table

V.

Table V

Direct comparison of absolute total energies calculated by different meth-

ods used in this work is only possible among the results obtained by the same

program. For ab initio, as expected, the inclusion of six d-type polarization

functions (in the DH6D basis set), compared with five pure d-type functions
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(in the DH5D basis set) lowers the calculated energy. Using six cartesian

d-type gaussians is equivalent to using the set of five pure functions of d-

type augmented with a 3s-type (i.e., Nr2exp[−αr2]) function. This energy

change is negligible for our RHF calculations (on average 0.00060 hartree, i.e.,

≈0.38 kcal/mol), however, this change is roughly 10 times larger (on average

0.0059 hartree, i.e., ≈3.7 kcal/mol) for MP2 calculations. This reflects the

fact that polarization functions contribute substantially to low-lying virtual

orbitals, and the contamination with the 3s orbital brought by combination

of six cartesian d-type functions is expressed much more strongly in corre-

lated methods than at the RHF level. On the other hand, the difference

between corresponding MP2(5d) and MP2(6d) energies is essentially identi-

cal for the parent and protonated molecule thus, this basis set modification

does not significantly affect the electronic energy contribution, ∆Eelec
Rn , to the

calculated proton affinity. This should be expected since the parent and the

protonated molecule have the same number of “heavy” atoms whose basis

sets contain d-type functions and they differ only in the number of hydrogen

atoms.

The effect of adding Becke-Perdew corrections to the LSD energy can

be examined for DGauss and deMon calculations. It is known that LSD
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approximation tends to grossly overestimate correlation energy (frequently

as much as 100%) while it underestimates electron exchange energy by as

much as 10%6. Both, the exchange and the correlation energy, are negative

but typically the magnitude of electron exchange energy is of several orders of

magnitude larger than the correlation energy for the same system. Therefore,

the magnitude of the 10% correction to the exchange energy is typically

larger than the magnitude of the correlation energy. For this reason, NLSD

corrected energies are lower than the corresponding LSD energies.

DMol uses five d-type functions) while DGauss and deMon use six carte-

sian gaussians as d-type functions. Judging from ab initio results, this dif-

ference should not have any substantial impact on the calculated proton

affinities.

The changes in the ground state electronic energies on protonation, ∆Eelec
Rn ,

are ordered as: DMol < DGauss(LSD) ≈ deMon(LSD) < DGauss(NLSD) ≈

deMon(NLSD) < MP2(6d) ≈ MP2(5d) < RHF(6d) ≈ RHF(5d). This find-

ing suggests that the LSD approximation generally underestimates electronic

energy changes on protonation, and gradient (NLSD) corrections bring the

results significantly closer to the MP2 values.

The DH5D and DH6D basis sets are far from optimal for calculations of
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proton affinities since they do not include diffuse s and p-type functions13. It

is dramatically pronounced in the calculated energies for anions. However,

they were chosen here for comparison with DFT calculations. Inclusion of

diffuse functions is absolutely required2,12,32 for meaningful calculations of

electronic energy for anions by ab initio methods.. To illustrate the effect of

diffuse functions, we performed RHF and MP2 calculations for formate anion,

and the corresponding neutral acid with DH6D basis set augmented with

diffuse s-type and p-type functions on oxygen atoms. As expected, this led

to a substantial lowering of electronic energy for the formate anion, while the

effect was much smaller for the neutral acid, i.e., the ∆Eelec
Rn was significantly

smaller for the basis sets including diffuse functions. Surprisingly, the DFT

methods seem less sensitive to the lack of diffuse functions. This apparent

insensitivity of the DFT calculations to the inclusion of diffuse functions may

be explained by the fact that the underlying quantity in the DFT calculation

is the charge density. Diffuse functions do not contribute substantially to the

occupied molecular orbitals, and the charge density is the sum of one-particle

densities derived from the corresponding occupied orbitals. This reasoning is

indirectly supported by our ab initio results. The HF energy for the formate,

is substantially less affected by adding diffuse functions (0.0110 hartree) than
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the MP2 energy (0.0222 hartree). The energies of formic acid calculated with

and without diffuse functions differ by 0.0032 and 0.0090, for HF and MP2;

respectively.

Table VI collects zero point energies (ZPE) derived from calculated vi-

brational frequencies by eq 2, and the temperature-dependent portion of vi-

brational enthalpies, E ′vib, computed from eq 3 for the molecules studied. All

values of E ′vib are small for molecules of this size, in our case on the order of

1 kcal/mol or less. Consequently, the differences between E ′vib values for the

parent and protonated molecules are negligibly small compared to the exper-

imental error in proton affinity measurements. For larger molecules ∆E ′vib

can also be safely omitted in proton affinity calculations since the largest

contributions to E ′vib come from the lowest frequency vibrations (e.g., tor-

sions around single bonds) and these are for the most part not substantially

affected by protonation.

Table VI

The value of ZPE is proportional to the sum of vibrational frequencies, and

therefore it is primarily affected by larger frequences (e.g., bond stretching
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and bending vibrations). The differences in ZPE for protonated and par-

ent molecule is therefore not small and in our case approaches 10 kcal/mol.

Protonation results in the formation of a new covalent X—H bond and also

affects geometry and strength of vicinal bonds. For that reason, ∆ZPE

must be accounted for in proton affinity calculations. Also, systematic over-

or under-estimation of frequencies will bias the value of ZPE in the same

direction. Moreover, it should be noted that ZPE in our case is calculated

within the harmonic approximation. Experimental frequencies available in

the literature for our series of molecules are not corrected for anharmonicity,

and therefore, direct comparisons with experimental values of ZPE were not

attempted.

The magnitudes of calculated ZPE’s in our series of molecules are ordered

as: DMol ≈ DGauss(LSD) ≈ deMon(LSD) ≈ deMon(NLSD) < MP2(6d)

≈ MP2(5d) < RHF(6d) ≈ RHF(5d). RHF frequences are usually larger

than experimental (even if measured frequencies are converted to harmonic

ones) and therefore the RHF calculated ZPE’s are too large2. The MP2

calculated frequencies are in much better agreement with experiment, though

in general they are also slightly higher than measured harmonic frequencies2.

This effect is clearly visible in stretches along polar X—H bonds. Since

19



LSD calculated zero point energies are slighlty smaller than MP2 calculated

ones, they exhibit the plausible trend. RHF and MP2 calculations with the

DH6D(+) basis set for formic acid, and the corresponding anion, produced

ZPE’s very similar to the DH6D basis set. The major contribution to error in

proton affinities of anions calculated with basis sets lacking diffuse functions

is therefore from the electronic energies.

Proton affinities were calculated from eq 4. The values of calculated gas

phase proton affinities together with the experimental values are collected

in Table VII. The errors in experimental values are roughly 2 kcal/mol for

affinities within 167–204 kcal/mol range and the error gets much larger out-

side this range due to the lack of adequate reference proton affinities34.

Table III

The RHF(6d) and RHF(5d) calculated proton affinities are practically identi-

cal. In our series of molecules they are all too large compared to experimental

values. Overestimation of proton affinities at the RHF level is well illustrated

by other authors for similar molecules22,2,3,35,36. This trend in RHF calcula-

tions is mainly due to the overestimated ∆Eelec
Rn , however, ∆ZPE is usually
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also exaggerated since the calculated frequency of the newly formed X—H

bond is too large. The MP2 results are practically identical for MP2(6d)

and MP2(5d) cases, and are in substantially better agreement with experi-

mental values. As was mentioned above, adding diffuse functions on oxygen

dramatically improves the calculated proton affinity for the formate anion.

The proton affinities calculated within the LSD approximation are sub-

stantially smaller than the experimental values. For our series of molecules,

LSD underestimates ∆Eelec
Rn . Proton affinities calculated with DGauss(NLSD)

and deMon(NLSD) are in excellent agreement with the experimental values.

They are even slightly better (σDGauss(NLSD) = 2.4 kcal/mol, σdeMol(NLSD) =

2.3 kcal/mol) then those from MP2 calculations (σMP2(6d) = 2.6 kcal/mol

when the result obtained with diffuse basis functions was used for formate)

and much better than the ones from RHF calculations (σRHF (6d) = 4.4

kcal/mol).

It seems that for this particular series of molecules it does not matter if

gradient corrections were applied perturbationally to the LSD energy (at LSD

optimized geometry) or if they were introduced in a self-consistent way during

geometry optimization. This may, however, be fortuitous due to the fact that

C—X bonds are slightly shorter and X—H and C—H slightly longer than for
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the corresponding NLSD calculations. It may provide for some cancellation

of errors which results in similar overall values of affinities.

Concluding Remarks

We have shown that the DFT methodology is a good candidate for routine

calculations of proton affinities. However, it is evident that the nonlocal

gradient corrections have to be used to correctly estimate the change in

electronic energy of protonation. The results obtained with Becke-Perdew

corrections applied perturbationally or in a self-consistent manner are of MP2

quality but require much less computation. Moreover, since DFT methods

scale formally with molecular size as N 3 (compared to N 5 for MP2 ab initio

approach) they can be applied to much larger molecules.

.
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