Computational Chemistry Lab

Addis Ababa University School of Graduate Studies Department of Chemistry

For M.Sc program in Physical Chemistry

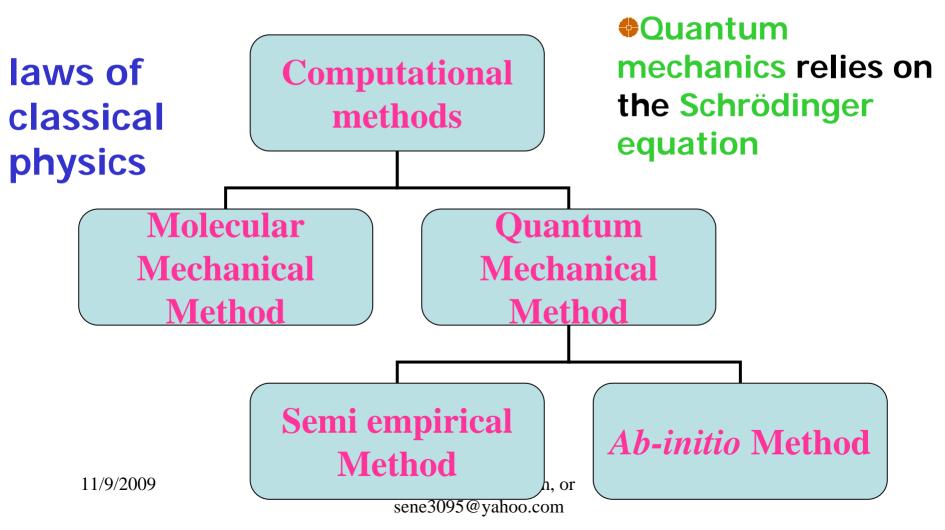
Presentation by: Taye Beyene

11/9/2009

sene3095@gmail.com, or sene3095@yahoo.com

What is Computational Chemistry?

•is the application of computer based models to the simulation of chemical processes and the computation of chemical properties.


•Computational chemistry is a valuable tool for experimental chemists to bypass tedious, time consuming, costly and some times dangerous experiments.

-too unstable molecules to be studied experimentally

-Properties which are not experimentally observable

Computational Chemistry

The field of Chemistry that focuses on Theoretical Aspects and Computer program

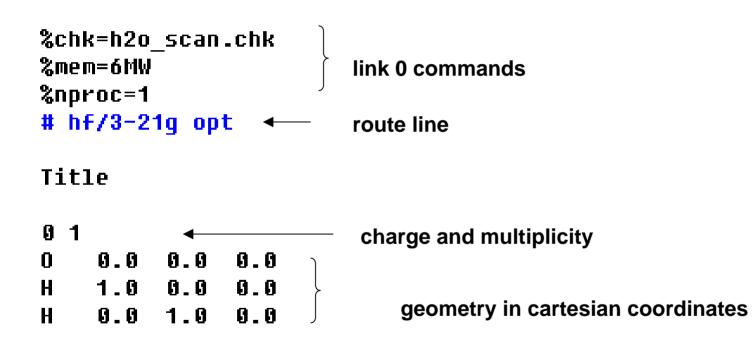
Gaussian and Gaussview

Gaussian (www.gaussian.com):

- computational chemistry software package
- performs molecular mechanics, *ab initio*, density functional theory, and semi-empirical molecular orbital calculations
- calculates a wide range of properties
- performs geometry optimizations and frequency calculations

Gaussview (www.gaussian.com):

- graphical user interface for Gaussian
- can build molecules, set-up input files, submit Gaussian calculations, and visualize results


Gaussian Input File

the Gaussian input file has the following form (http://www.gaussian.com/g_ur/m_input.htm):

- 1. Link 0 Commands: -set up memory limits, etc. Line starts with %. Optional.
- 2. Route Section: -specifies the details of the calculation -can be multiple lines with max. 80 characters -each line in Route Section must start with #
- 3. Blank Line: -tells program Route Section is done
- 4. Title
- 5. Blank Line: -tells program Title is done
- 6. Charge and Multiplicity
- 7. Molecular Geometry: -provide the atomic coordinates -Cartesian or Z-matrix format
- 8. Blank Line: -tells program the input file is done

Gaussian Input File

example input for water

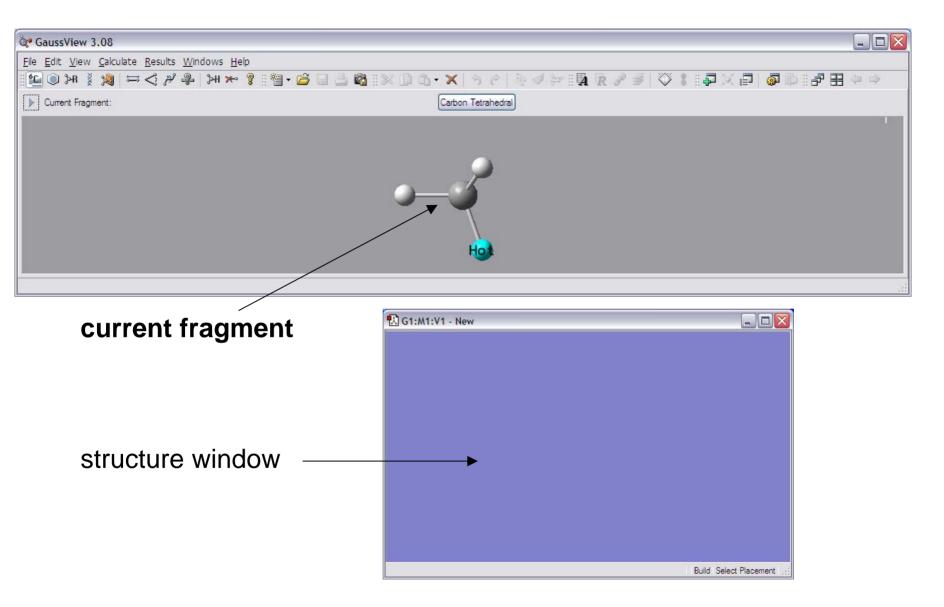
Output

- gaussian output files will usually end with .log or .out
- contains a lot of information \rightarrow contents depend on type of calculation
- units are usually Hartree for energy and Angstrom for distance (but not always)

1 Hartree = 627.51 kcal/mol

 $1 \text{ Angstrom} = 1.0 \times 10^{-10} \text{ m}$

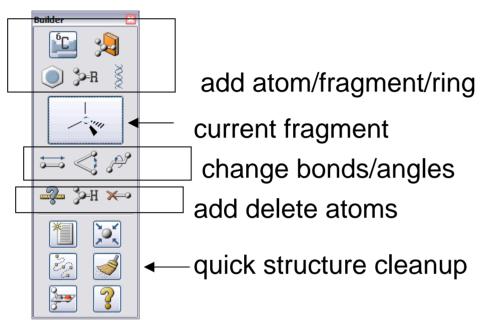
Things to look for in the output:

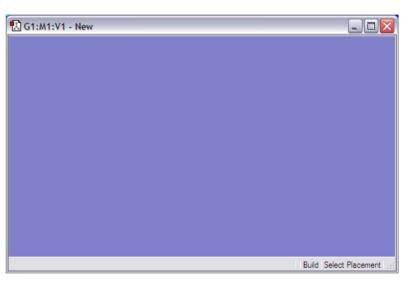

- molecular structure → look for a line saying "Input orientation:"
- molecular energy → look for a line saying "SCF Done:"
- convergence in optimization → look for a line saying "Maximum Force"
- summary of a rigid scan → look for a line saying "Summary of the potential surface scan"
- summary of a relaxed scan → look for a line saying "Summary of Optimized Potential Surface Scan"
- frequency information → look for a line saying "Harmonic frequencies"

11/9/2009

Gaussview

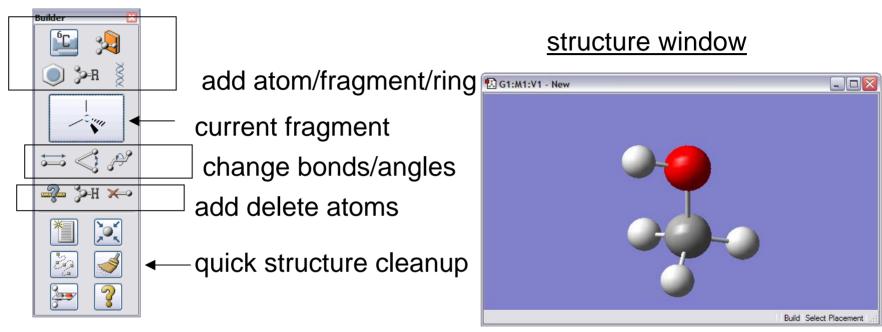
- graphical user interface to Gaussian
- builds molecules
- sets up input files
- submits calculations
- visualizes output


35


• shows molecule for current coalculation or sene 3095@yahoo.com

Gaussview – Builder

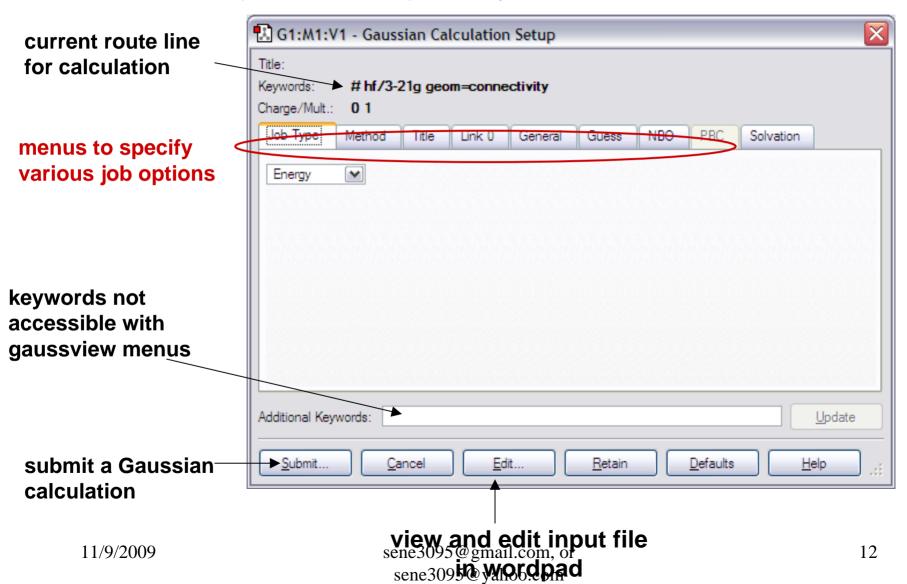
Open the builder menu by selecting: View \rightarrow Builder

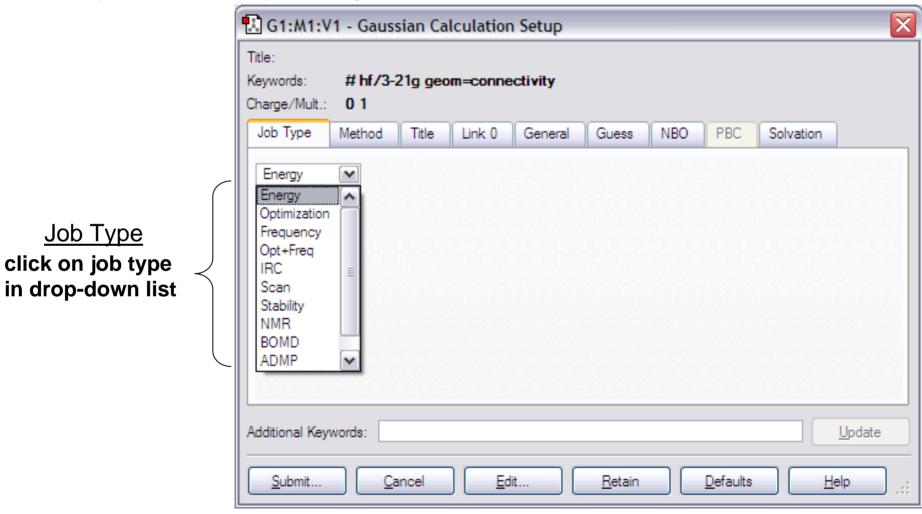

structure window

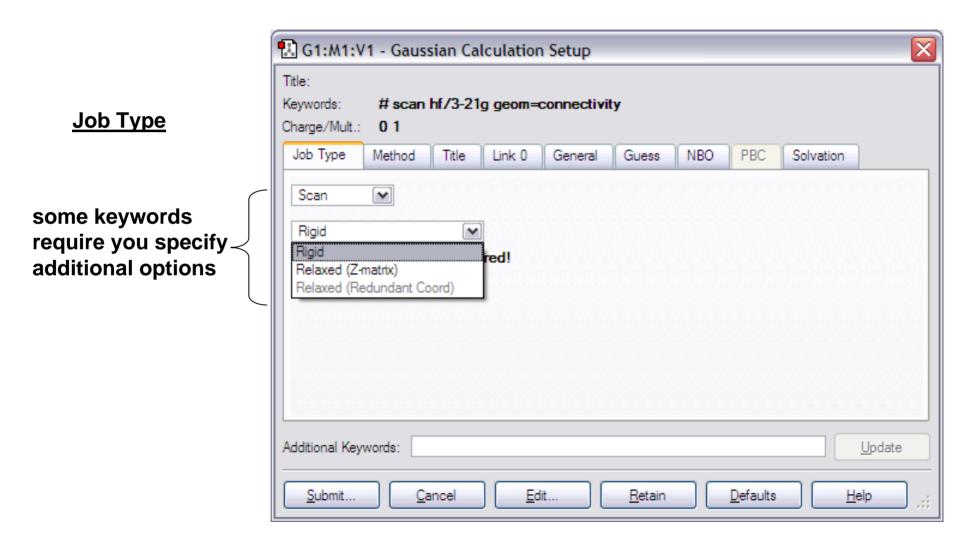
- use builder toolbar to select atoms/fragments to add to molecule
- add fragments by clicking in structure window
- run a quick structure cleanup to get a structure with reasonable bond lengths/angles
- can modify structure by selecting appropriate tool in builder toolbar and applying tool in structure window

11/9/2009

Open the builder menu by selecting: View \rightarrow Builder



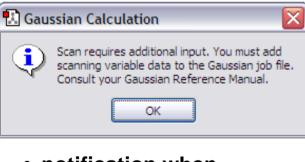

- use builder toolbar to select atoms/fragments to add to molecule
- add fragments by clicking in structure window
- run a quick structure cleanup to get a structure with reasonable bond lengths/angles
- can modify structure by selecting appropriate tool in builder toolbar and applying tool in structure window


11/9/2009

sene3095@gmail.com, or sene3095@yahoo.com

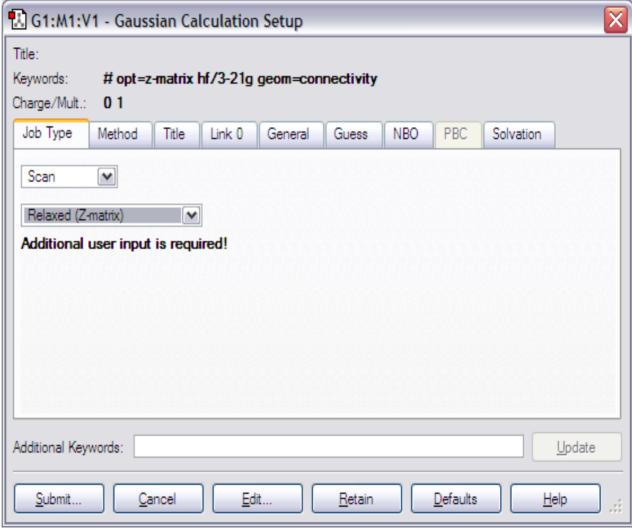
Gaussview – Calculation Setup

	🖫 G1:M1:V1 - Gaussian Calculation Setup									
<u>Method</u>	Title: Keywords: Charge/Mult.:		hf/3-21	g geom⇒	connectivi	ty				
specify the method used to calculate	Job Type	Method	Title	Link 0	General	Guess	NBO	PBC	Solvation Multilayer ON	IOM Model
the energy		Ground Stat		Hartree-Fo		Default Spi	n 🔽	_		
specify the basis set	_	3-21G	: Sing	glet 💌	•					
set the charge and multiplicity										
	Additional Key	words:								<u>U</u> pdate
	<u>S</u> ubmit		incel	<u>E</u> d	t	<u>R</u> etain		<u>D</u> efaults		elp .::


	🔝 G1:M1:V1 - (Gaussian Ca	lculation	Setup					X	
	Title: Keywords: # scan hf/3-21g geom=connectivity Charge/Mult.: 0 1									
	Job Type Met	hod Title	Link 0	General	Guess	NBO	PBC	Solvation		
	Use Quadratio	cally Converger	t SCF		Addition	nal Print				
<u>General</u>		Redundant Co	ordinates		Write C	connectivi	ty			
click here to set the symmetry to C1	► Ignore Symme	etry								
	Additional Keywords	s:							<u>U</u> pdate	
	<u>S</u> ubmit	<u>C</u> ancel		t	<u>R</u> etain		<u>D</u> efaults		elp .::	

<u>Submit</u>

 click submit to run the calculation


🔝 Run Gaussian 🛛 🛛 🔀						
Submit the following file to Gaussian?						
C:\G03W\my_jobs\methanol.gjf						
Ok Cancel						

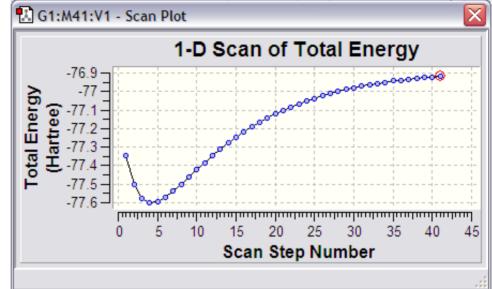
 sometimes additional input is required

 notification when finished

Gaussian 03							
Gaussian job has completed Do you want to close the Gaussian window?							
<u>Y</u> es	No						

sene3095@gmail.com, or sene3095@yahoo.com

Gaussview – Results


X

You can analyze the results with: Results \rightarrow Option (depends on type of job)

🔝 G1:M1:V1 - Calculation Summary

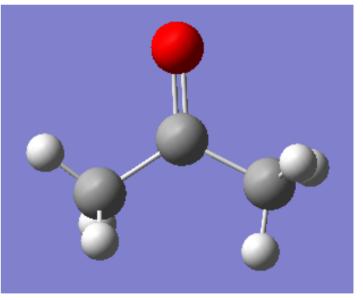
Title Card Required									
File Type	.log								
Calculation Type	FREQ								
Calculation Method	RHF								
Basis Set	3-21G								
E(RHF)	-114.39801919	a.u.							
RMS Gradient Norm	0.00007469	a.u.							
Imaginary Freq	0								
Dipole Moment	2.1227	Debye							
Point Group	C1								
Job cpu time: 0 days 0 hours 0 minutes 11.0 seconds.									

<u>O</u>k

# /	Freq	Infrared	Raman	Depolar-P	Depolar-U	16
1	360.694	172.728	6.0799	0.75	0.8571	
2	1090.36	99.0305	7.4934	0.2913	0.4512	
3	1152.73	19.0775	7.0726	0.5664	0.7232	
4	1253.78	0.924	9.2184	0.75	0.8571	
5	1480.79	30.4862	6.3543	0.7291	0.8434	
6	1637.29	4.9074	6.5274	0.7111	0.8311	
7	1685.37	3.1547	26.2697	0.75	0.8571	
8	1697.91	3.3291	24.2007	0.7494	0.8568	
9	3179.44	40.8931	111.586	0.0799	0.1479	
10	3218.86	85.0498	62.2213	0.75	0.8571	1
11	2295 12	34 0436	72 9626	U 255V	0 6 272	1
Frames / Cyc	de:]		
Displacemen	it:					
Show Di	splacement Vect	ors				
Show Di	pole Derivative L	Init Vector				
_ JUIN DI	pole Delivative c	A HE VEGLOI				

11/9/2009

senes095@yanoo.com


1. Geometry Optimization

Geometry Optimization:

- minimize the energy of a molecule by iteratively modifying its structure
- provides the energetically-preferred structure of a molecule
- the located structure will correspond to the <u>local minimum</u> nearest on the potential energy surface to the input structure
- suitable for determining the structures and energies of reactants and products

This example:

- optimize the geometry of (CH₃)₂CO starting from a structure built with gaussview using standard bond lengths and angles
- geometry provided in Z-matrix format
- calculation performed at hf/3-21G level of theory (more on this in future lectures)

Geometry Optimization – Input

opt hf/3-21g nosymm 🗲

Title Card Required

0 1

Bó

B7

B8

B9

A1

A2

A3

A4

A5

A6

A7

A8

D1

D2

D3

D4

D5

D6

D7

C									
н	1	B1							
н	1	B2	2	A1					
н	1	B3	3	A2	2	D1			
C	1	B4	4	A3	3	D2			
0	5	B5	1	A4	4	D3			
C	5	Bó	1	A5	6	D4			
н	7	B7	5	A6	1	D5			
н	7	B8	5	A7	1	Dó			
н	7	B9	5	A8	1	D7			
B1		1.07	000	000					
B2		1.07	000	000					
B3	1.07000000								
B4		1.54	000	000					
B5		1.43	000	000					

1.54000000

1.07000000

1.07000000

1.07000000

109.47120255

109.47121829

109.47121829

120.00000000

120.00000000

109.47122063

109.47122063

109.47122063

120.00000060

180.00000000

-120.00003407

-180.00000000

166.53624326

-73.46375674

46.53624326

 keyword 'opt' requests a geometry optimization to a minimum energy structure

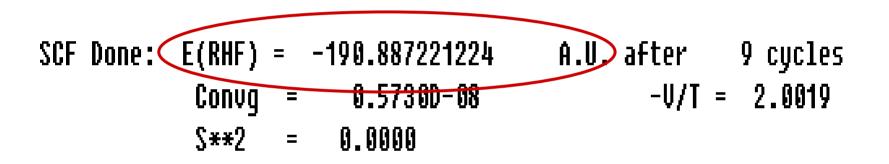
- 'hf/3-21G' specifies level of theory for the calculation
- 'nosymm' tells the program to set the initial symmetry to C1
 - geometry optimizations sometimes change the symmetry of the system, causing the calculation to fail
 - the minimum energy structure may not have the same symmetry as the initial structure

Geometry Optimization – Output

in a geometry optimization we may want to determine:

RMS

Displacement

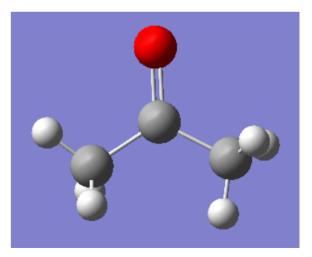

• a stationary point corresponding to a minimum energy structure \rightarrow need to monitor whether the convergence criteria are met first step: Item Value Threshold **Converged?** Maxi<mark>mum F</mark>orce 0.000450 **A.19622A** ΝĤ RMS Force 0.033395 0.000300 NO Maximum Displacement 0.253014 0.001800 NO Displacement 0.052569 0.001200 RMS NO intermediate step: Item Value Threshold **Converged?** Maxi<mark>mum F</mark>orce 0.001162 0.000450 NO RMS Force 0.000252 0.000300 YES Maximum Displacement 0.260013 0.001800 NO RMS Displacement 0.096764 0.001200 NO final step: Item Value Threshold **Converged?** Maximum Force 0.000058 0.000450 YES RMS Force 0.000018 0.000300 YES Maximum Displacement 0.001554 0.001800 YES

0.001200

0.000615

YES

- a stationary point corresponding to a minimum energy structure
 → need to monitor whether the convergence criteria are met
- energy of the optimized structure
 - \rightarrow energy statement in step where convergence criteria are met
 - \rightarrow last energy statement in the output file


2. Frequency Calculation

Frequency Calculation:

- calculate the normal modes and associated vibrational frequencies for the input structure
- used to characterize stationary points as minima or transition states
- used to calculate zero-point vibrational energies
- used to calculate thermal corrections to the potential energy
- used to simulate IR/Raman spectra

This example:

- perform a frequency calculation of (CH₃)₂CO
- geometry provided in Z-matrix format
 → geometry obtained through a
 previous optimization
- calculation performed at hf/3-21G level of theory

Frequency Calculation - Input

# freq Title	hf/3-21g	 keyword 'freq' requests a frequency calculation
01 CH1 H1 H1 C1 C5 H7 H7 H7	B1 B2 2 A1 B3 3 A2 2 D1 B4 4 A3 3 D2 B5 1 A4 4 D3 B6 1 A5 6 D4 B7 5 A6 1 D5 B8 5 A7 1 D6 B9 5 A8 1 D7	 'hf/3-21G' specifies level of theory for the calculation
B1 B2 B3 B4 B5 B6 B7 B8 B9 A1 A2 A3 A4 A5 A6 A7 A8 D1 D2 D3 D4 D5 D6 D7	$\begin{array}{c} 1.07000000\\ 1.07000000\\ 1.54000000\\ 1.54000000\\ 1.54000000\\ 1.54000000\\ 1.54000000\\ 1.07000000\\ 1.07000000\\ 1.07000000\\ 1.07000000\\ 1.07000000\\ 1.07000000\\ 1.07000000\\ 109.47120255\\ 109.47121829\\ 109.47121829\\ 109.47121829\\ 120.00000000\\ 120.0000000\\ 120.0000000\\ 109.47122063\\ 109.47206\\ 100.47206\\ $	 coordinates in Z-matrix format, but frequency calculations can also be performed with cartesian coordinates structure must correspond to a stationary point recall, frequency calculations in harmonic approximation are only valid at stationary points

Frequency Calculation - Output

in a frequency calculation we may want to determine:

normal modes and vibrational frequencies

Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates:

	and i	norma	al coorai	nares:									
				1			2			3	← r	node	
				A			A			A		6	
	Frequ	uenci	les	85.835	7		160.748	0		405.904	0	– treq	uencies in
	Red.	mass	ses	1.019	7		1.116	2		2.211	7	cm ⁻¹	
	Frc (const	s	0.004	4		0.017	0		0.214	7		
	IR II	nten		0.000	0		0.046	2		1.189	7		
	Ramai	n Act	iv	0.051	9		0.000	17		0.261	7		
	Depo]	lar ((P)	0.750	0		0.749	3		0.255	8		
-	Depo	lar ((II) <u>(</u> II)	<u> </u>	1		A_856	7		<u>A_407</u>	4	•	
	Atom	AN	х	Y	Z	х	Y	Z	х	Y	z		
	1	6	0.00	0.00	0.02	0.00	0.00	0.04	0.16	0.10	0.00		
	2	1	0.00	0.00	-0.35	0.00	0.00	0.41	-0.06	0.39	0.00		
	3	1	0.16	0.32	0.25	-0.17	-0.31	-0.19	0.36	0.12	0.01		
	4	1	-0.16	-0.32	0.25	0.17	0.31	-0.19	0.36	0.12	-0.01		normal mode
	5	6	0.00	0.00	0.00	0.00	0.00	0.02	0.00	-0.13	0.00		
	6	8	0.00	0.00	0.00	0.00	0.00	-0.07	0.00	-0.13	0.00		displacement
	7	6	0.00	0.00	-0.02	0.00	0.00	0.04	-0.16	0.10	0.00		S
	8	1	0.00	0.00	0.35	0.00	0.00	0.41	0.06	0.39	0.00		
	9	1	0.16	-0.32	-0.25	0.17	-0.31	-0.19	-0.36	0.12	0.01		
	10	1	-0.16	0.32	-0.25	-0.17	0.31	-0.19	-0.36	0.12	-0.01		
												1	

Frequency Calculation - Output

in a frequency calculation we may want to determine:

- normal modes and vibrational frequencies
- zero-point vibrational energies

Zero-point vibrational energy

236075.8 (Joules/Mol) 56.42347 (Kcal/Mol)

thermal corrections to the potential energy

Zero-point correction= 0.089917 (Hartree/Particle) Thermal correction to Energy= 0.095029 Thermal correction to Enthalpy= 0.095973 Thermal correction to Gibbs Free Energy= 0.062198 Sum of electronic and zero-point Energies= -190.797305Sum of electronic and thermal Energies= -190.792192Sum of electronic and thermal Enthalpies= -190.791248Sum of electronic and thermal Free Energies= -190.825023

Lab activities

Optimize the following g molecules and report the properties according to the chart given below;

	Angle- VSEPR predicted (i.e. 109.5°, <109.5°	Angle after optimizati on	Angle- experime ntal	Bond length 'cleanup' optimizat ion (A)	Bond length after optimizatio n (A)	Change in Gibbs free energy (ΔG)
H ₂ O			104.5°			
NH ₃			107.3°			
CH ₄			109.5°			

The End